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Abstract

Can limited competition in procurement auctions explain the high, and rising, price of road
infrastructure in the U.S.? I assemble a new dataset covering the near-universe of state highway
auctions between 2002 and 2024. I first document thin competition: one- or two-bidder auctions
account for a third of awards, and this share has risen over the past decade. Using spatial
variation in inter-state bidder locations, I then estimate the average causal effect of competition
on prices; an additional bidder reduces prices by ten percent. To decompose bids in the data
into markups and production costs, I develop a semi-parametric structural auction model that
incorporates bidders’ uncertainty over the number of competitors they face. I show that price
increases over the past decade are primarily attributable to increasing markups, not increasing
production costs. Limited competition, in turn, is consistent with patterns generated by fixed
costs of entry, but not broad construction-sector fixed costs. Embedding the markup estimates
in an entry model, I estimate large auction and market entry costs, consistent with an important

role for procurement complexity and regulatory barriers.
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1 Introduction

American infrastructure is remarkably expensive. For example, the per-mile price paid by the
U.S. federal government to construct transit lines can be up to double that paid by peer countries.!
Despite extensive public attention, the underlying causes of these high prices remain a puzzle.”
One longstanding view is that high prices reflect high production costs, driven for example by
high labor costs or low productivity (Kessler and Katz, 1999; Goolsbee and Syverson, 2023).
However, since governments typically procure infrastructure from private firms that compete for
public contracts, often via auctions, high prices may also be driven by limited competition and
resulting firm markups over production costs. Indeed, this view is notably present in free-response
answers from transportation procurement officials in a survey by Liscow et al. (2023), where the most
commonly cited cost driver is “Competition,” followed by “Materials and Labor.” Disentangling
the contributions of markups versus production costs is vital to increasing the direct return on
infrastructure investment, and thus realizing the well-documented benefits of better infrastructure on

trade, productivity, labor markets, commuting and mobility, and consumption.?

At least three factors make it challenging to disentangle these channels in practice. First, fragmented
procurement systems across the country have resulted in scarce data, such that even simple statistics
— such as the number of bidders per procurement auction — are difficult to obtain. Second,
infrastructure projects differ substantially in scope and complexity, making projects difficult to
compare across years and across markets. Third, simple statistics do not map cleanly to conclusions
about the effects of competition: estimating these effects requires understanding firms’ strategic
behavior and their information sets — accounting, for example, for firms’ limited information about
the number of competitors they face in any given auction. Ignoring these uncertainties biases

estimates of markups.

IThe average per-km cost of U.S. projects is 33%, 103%, 200%, and 680% higher than for the U.K., Australia,
Canada, and Spain, respectively, according to data compiled by the NYU Marron Institute. See Figure A.1 for a plot of
the data.

2See Smith (2017) and Vartabedian (2021) for examples of news articles hypothesizing on cost drivers.

3For trade see Limdo and Venables (2001), for productivity see Donaldson and Hornbeck (2016), Ghani et al.
(2014), Baum-Snow (2014), Gibbons, Lyytikdinen, et al. (2019), for labor markets see Chandra and E. Thompson
(2000), Michaels (2008), for commuting and mobility see Gibbons and Machin (2005), Glaeser et al. (2008), and for
consumption see Gonzalez-Navarro and Quintana-Domeque (2016), among others.



In this paper, I overcome these challenges in the context of highway infrastructure auctions in the
continental U.S. Nearly all major roadwork and bridges fall into this category, and this procurement
method embodies the most common form of infrastructure procurement worldwide.* I first assemble
a novel dataset of 1.3 million project-level bids spanning two decades of auctions, and I use this
data to document novel facts about costs and competition in road procurement: most importantly,
that prices are rising and competition is strikingly thin and decreasing over time. I exploit spatial
variation in inter-state bidder locations to estimate the average causal effect of competition on
winning bids and find that an additional bidder reduces prices by ten percent. I then develop and
estimate a semi-parametric structural model of auction bidding that is able to decompose bids into
markups and production costs. The model accounts for firms’ uncertainty over the entry decisions
of other bidders and the government’s reserve price, and is estimated with minimal functional form
assumptions, leveraging the richness of the data. The model estimates reveal the role of markups in
historical price trends, while a model counterfactual provides price reductions from hypothetical
increases in participation. Estimated current and counterfactual markups additionally enable me to
estimate entry costs, and thus speak not only to the consequences, but also the causes, of limited
competition: I find an important role of bureaucratic costs of entering auctions and regulatory costs

of entering new state markets.

I begin by assembling panel data on the near universe of auctions for state Departments of
Transportation (DOTs) from 2002 to 2024. States are the principal governmental unit responsible
for road construction, and the vast majority of projects are awarded through sealed-bid first price
auctions. For each auction, I have a series of covariates, including a measure of size and a brief
project description. Importantly, for a sub-sample of ten years, I have the bid-schedule for each
project, which is the complete list of construction inputs. This data substantially extends prior
sources, which in the empirical auction literature typically cover only a single state or a small

handful of states.’

The data reveals new facts on the U.S. road procurement market, in particular rising prices and

40Of 40 countries surveyed by the World Bank, all primarily used design-bid-build methods with competitive bidding
for traditional infrastructure investment (World Bank, 2020).

SLiscow et al. (2023) provide the first data spanning all states through the combination of survey and public record
requests; however, the authors’ bid analysis is limited to five winning bids per state. My dataset additionally captures the
full distribution of bids across the continental U.S.



weakening competition. I find that over the past two decades, inflation-adjusted winning bids
have more than doubled. The trend persists through a variety of sub-samples of the data, such
as restricting to similarly sized projects, and increases in the price of important inputs do little
to explain it. By contrast, within-state price trends from two-way-fixed-effects regressions are
correlated with changes in variables related to market structure, such as the number of bidders. To
my knowledge, this is the first academic study of 21st-century price growth. These results extend
Brooks and Liscow (2023), who show the Interstate Highway System spending per new mile tripled
in real terms in the 1960s—1980s, finding continued growth despite the shift from new construction

to reconstruction.®

To probe the mechanisms underlying high prices, I start by providing simple measures of competition.
I document that, nationwide and over time, transportation auctions have attracted only a small pool of
bidders. The median auction draws just three participants, and one- or two-bidder auctions account
for about a third of all projects. Since 2010, the share of auctions with 1-3 bidders increased from
47% to 63% by 2024. Declining participation occurs against a backdrop of minimal market entry
and stable demand, despite the billions of dollars allocated towards transportation infrastructure
in 2021 Infrastructure Investment and Jobs Act (IIJA). Together, these statistics provide a newly

comprehensive picture of bidder participation in transportation procurement.

Given the challenges of quantifying the impact of the number of bidders on prices, I approach this
question several times in this paper. I start by looking at gap between an the first and second lowest
bids in an auction, which provides a simple measure of the loss to government if the first bidder
were to drop out. I find this bid gap declines substantially and convexly as the number of bidders
increases, revealing to competition hinge, intuitively, on the baseline number of bidders. However,
this measure would be a naive estimate of the magnitude of those returns: it would presume which
bidder is marginal, a composition assumption, and hold other bids fixed, a strategy assumption. The

composition and strategy effects together determine the causal effect.

Consequently, the second contribution of this paper is to directly estimate the average causal effect

of an additional bidder on auction prices. Theoretical auction models often predict large returns,

®Brooks and Liscow (2023) show suggestive evidence that the 20th century price growth is caused by permitting costs
and citizen voice frictions, which are likely to be more binding for brand new construction than for the reconstruction
projects that make up modern roadwork.



but direct empirical evidence is more limited and more mixed.”-® This is at least in part due to
the difficulty in finding exogenous shifts in the number of bidders in real markets. The primary
identification challenge is selection into auctions, which induces a positive correlation between the
number of bidders and the error term in the price equation. I address this with an instrumental
variables strategy that exploits two sources of variation. I identify inter-state entry by firms based
outside the market of interest; such entry is rare but lumpy, and when it occurs firms typically
enter many auctions, creating plausibly exogenous and salient variation in local competition. I
interact state entry with the distance to the out-of-state bidder’s establishment, as distance is a strong
predictor of a firm auction entry. My estimates suggest that on average an additional bidder lowers

the winning bid by 10%.

I then turn to a structural auction model of bidding in order to decompose the prices paid by the
government into two pieces: markups and firms’ variable production costs. The model allows me to
(1) estimate the heterogeneous effect of additional bidders, for example, across different baseline
number of bidders; (ii) estimate whether declining competition can explain the historical rise in

prices; and (iii) quantify counterfactual returns from increased bidder competition in the future.

I build on an independent private value auction model, incorporating key features of the setting. In
particular, I account for the fact that while firms have information on the probability distribution of
the number of bidders in an auction, they do not know the exact number.” I model the government’s
discretion to reject bids as a secret reserve price, where again, bidders have information on the
distribution but not the realization. The benefit to the researcher of the auction setting is that, under
independence assumptions and information assumptions like the above, a profit maximizing firm has
an optimal bid given their cost draw. I take advantage of this to identify the unobserved production

costs from observed bids, with minimal functional form assumptions.

I estimate the model for all roadwork auctions in the continental U.S. between 2014 and 2023, the

period for which I have the complete bid-schedule data for each project. I split the estimation by

"For example, Bulow and Klemperer (1996) show that under standard assumptions, increasing the number of bidders
by one benefits the seller more than adopting the optimal mechanism would.

8For two papers on this topic, see Coviello and Mariniello (2014) and Lewis-Faupel et al. (2016).

9A few papers incorporate uncertainty over the number of bidders, but differ in assumptions. For instance, Li and
Zheng (2009) and De Silva and Rosa (2024) model uncertainty by explicitly modeling potential entrants in mixed-strategy
entry equilibria, in particular relying on parametric cost distributions.



state, year, and a covariate-based cluster, allowing trends over time and across states to be fully
flexible. Joint auction estimation within samples requires accounting for project heterogeneity,
which I address by “homogenizing" bids to remove the effects of project covariates, as in Haile et al.
(2003). Building on the traditional linear regression method, I use machine learning on covariates

and absorb residual unobserved heterogeneity with an auction random effect.

The structural estimates indicate substantial markups. The mean markup is around 0.2. This
corresponds to an average per-auction margin of a bit more than $0.7 million. A back-of-the-envelope
calculation yields a total of roughly $25 billion spent above production cost over the ten year period.
While most states exhibit sizable markups, there is large dispersion across states: moving from the

25th to the 75th percentile raises the markup by 37%.

I use the model results to examine whether the rise in price between 2014 and 2023 can be explained
by decreasing competition. I find that roughly one third of the 28% realized price increase over
the ten year period is accounted for by the project observables, suggesting that even within project
type, projects are becoming more complex. More complex projects require more inputs in total and
may require novel inputs, such as environmental adjustments. Of the remaining two-thirds growth
that is real price growth, costs explain little, rising only 8%. This bounds growth on all variable
costs to the firm, including materials, labor, and opportunity costs. Increasing margins explain the
majority of the real price growth, rising by 45% over the period. Changing competition, rather than

production costs, appears to be the defining feature of infrastructure over the last decade.

How much could the government save with higher bidder participation? I solve for counterfactual
prices in the model using the most recent distribution of costs but under the hypothetical guarantee of
one additional bidder per auction. The counterfactual is able to account for the current distribution
of number of bidders — an advantage over the reduced form analysis — and decomposes the total
effect into the composition effect and the strategy effect. I find an average savings of $350,000 per
project, remarkably close to the 10% estimated in the reduced form exercise, although the identifying
assumptions have no overlap. The total effect is driven primarily by the strategic effect, suggesting

more productive entrants is a limited channel for price reduction.

Markups are large and persistent, yet firms do not enter auctions and drive down these variable

profits. In the final section, I present evidence that fixed costs are substantial, deterring entry. I rule



out construction capital requirements, instead showing evidence of significant entry barriers at both
the auction and the state market level. These barriers are consistent with procurement requirements
playing a central role in limiting participation, in line with views that decades of accrued rules have
led to policy congestion (Klein and D. Thompson, 2024). Entry costs also imply returns to market

scale: both larger auctions and thicker demand would reduce markups.

If policymakers aim to address entry costs, it is useful to know where the bottlenecks lie. Both
measuring regulation and unwinding layered, implementation-heavy rules to identify key ones are
complex (Trebbi and Zhang, 2022). Instead, I estimate whether market entry or auction entry costs
are larger. To do so, I combine the results from my bidding model with an entry model and, for
estimation, exploit the fact that firms enter only when expected total profits are nonnegative. The
model builds off of Berry (1992) and, while more stylized than the nested bidding model, yields a
straightforward parameterization of auction entry costs. I find sizable bureaucratic costs of entry
into auctions, with regulatory market costs of entry into state markets even larger. The results

suggest policy that can lower barriers would have meaningful impacts on competition and prices.
Related Literature

This paper’s main contribution is to shed light on the competitive structure of the United States
highway infrastructure market and its consequences. Other work seeking to understand infrastructure
costs includes Brooks and Liscow (2023) and Mehrotra et al. (2024), finding evidence that citizen
voice and material input costs contributed to higher costs in the late twentieth century and in
1984-2008, respectively. Most related to this paper is Liscow et al. (2023), who combine survey data
with public records requests and finds that low state capacity plays an important role in increasing
project costs. In alignment with this paper, the authors also report suggestive evidence that fewer
bidders results in higher prices. While the aim of this project is to quantify the competition channel,
state capacity may operate in the background, affecting either firms’ production costs or their
entry decisions. Looking outside the U.S., Kirchberger and Beirne (2021) study a similar issue
with international micro-data on input prices in the construction industry, showing that limited

competition in cement generates substantial markups.

Several papers investigate distinct but intertwined questions about infrastructure. Goolsbee and

Syverson (2023) study the deterioration of productivity in the U.S. construction sector from a



macro-accounting perspective, an issue that compounds rising costs. Viewed through the lens of
productivity growth in their paper, the question studied here becomes why infrastructure prices
have not fallen over time. Currier et al. (2023) study the quality of local road infrastructure and
estimate the distribution of the costs of poor road quality across places. Kroft et al. (2025) study the
relationship between construction production markups and monopsony power over construction
workers; they capture the public market contribution with auction data from 28 states. Finally,
Fajgelbaum et al. (2023) study the political incentives surrounding California’s high-speed rail,
a famously expensive megaproject, comparing welfare quantifications from a spatial model to

observed voting patterns.

To model procurement auctions, I build on a rich empirical literature. Since Paarsch (1992),
economists have inferred bidders’ valuations from observed bids using the structure implied by
optimal bidding strategies. Of particular relevance is the work on transportation infrastructure
auctions, which includes the following. Bajari (1997) analyzes bidder asymmetry in Minnesota
roadwork auctions. Hong and Shum (2002) examine winner’s curse in New Jersey procurement.
Jofre-Bonet and Pesendorfer (2003) estimate a dynamic capacity-constrained model in California. De
Silva, Dunne, et al. (2003) and De Silva, Kosmopouloous, et al. (2009) document incumbent—entrant
asymmetry in Oklahoma, while Li and Zheng (2009) study entry in Texas mowing contracts.
Krasnokutskaya (2011) account for unobserved heterogeneity in Michigan highway auctions, and
Krasnokutskaya and Seim (2011) evaluate small-firm preference policies in California. Lewis and
Bajari (2011) analyzes scoring auctions in California; Bhattacharya et al. (2014) quantify entry-rights
effects in bridge building in Oklahoma and Texas; and Jeziorski and Krasnokutskaya (2016) study
subcontracting. Balat (2017) examine ARRA impacts on capacity and prices in California. Bolotnyy
and Vasserman (2023) evaluate scaling auctions for bridge maintenance in Massachusetts. De Silva
and Rosa (2024) link the Great Recession’s private-sector downturn to lower Texas road prices,
and Ito (2024) show that firms in Montana signal entry intent through online questions. These
papers, and others, elucidate information, behavior, and optimal mechanism design in procurement
auctions. I build on this work with a parsimonious model that preserves key features and limits
functional-form bias. I also introduce an adjustment for bidder uncertainty over the number of
competitors in a given auction. To my knowledge, no paper yet has collected national data and used

the auction structure to evaluate markups in the U.S. as a whole.



2 Setting and Data

2.1 Transportation Infrastructure Market Structure

Major roads and bridges in the U.S. are the responsibility of state governments.'® In a regular
year, the U.S. already allocates an annual budget of $120 billion solely for the maintenance and
development of roads and bridges.!! Recent attention on infrastructure has led to additional funding,
such as the $1.2 trillion Bipartisan Infrastructure Investment and Jobs Act (IIJA) of 2021.'% Nearly
all roadwork is procured via auctions. State-managed projects procured by different means includes
large projects requiring technical innovation, whose design is usually outsourced.!® The typical
auction should be thought of as mid-sized, routine project involving limited design innovation, such

as the reconstruction of a segment of highway.

The vast majority of projects are completed through the following process.'* First, project
specifications are designed in-house by the state Department of Transportation (DOT). Then the
contract for completing the project is awarded to a construction firm via a sealed-bid first price
scaling auction. In a scaling auction, bidders are given detailed project specifications and a list of
input item quantities, known as the bid-schedule. A bid consists of a price per bid-schedule item.
The total price of the project is calculated, and the contract is awarded to the bidder with the lowest

total.

Bolotnyy and Vasserman (2023) show that firms often bid strategically on item prices, underpricing
items for which they expect the government to have overestimated quantities and overpricing those
they believe were underestimated. As a result, item-level bids are an unreliable measure of input
costs. In this project, I focus on the total bid, which determines firms’ expected profit, and set aside

the nested choice of pricing the individual items in the bid-schedule. Consequently, the auctions

19While the federal government allocates a substantial amount of funds to transportation infrastructure, these dollars
are all reallocated to the states. Local governments are responsible for local roads, which account for 77% of the road
system but only 13% of vehicle miles traveled (FHA, 2000).

""Data from the Organization for Economic Co-operation and Development (OECD) Infrastructure Investment Survey
(2024).

12Roads and bridges were the largest category of IIJA spending, with $110 billion directly allocated.

13An example of this extreme is Boston’s Big Dig project — the most expensive highway project in U.S. history —
awarded through negotiation to Bechtel Corporation, a company with an annual revenue of $16 billion and operate at a
different scale than most roadwork firms.

14 Alternative procurement methods account for fewer than 5% of DOT projects Liu et al. (2022).



can be treated as simple first price auctions. This allows me to focus on the role of competition in

shaping total prices.

On the supply side, construction firms operate in the public sector, private sector, or both. Appendix
Table A.9 profiles a random sample of five companies that compete for government contracts;
their listed sub-industries span road construction, carbon capture, general building, and ship repair.
All five also serve private clients. This makes sense as the private sector is larger overall: a
back-of-the-envelope calculation using Kroft et al. (2020) suggests that public-sector participants
account for about 22% of sales in the construction industry.'> Appendix Figure A.2 compares the
distribution of sub-industries (four-digit SIC codes) for auction participants with those of all firms
within two-digit SIC categories Building Construction and Heavy Construction.'® Single-Family
Housing Construction alone accounts for 78% of all firms, reflecting both the dominance of this
sector and the smaller scale of typical firms. Housing remains the largest category among auction
participants, but the distribution is markedly flatter, with a similar number of firms in Highway
and Street Construction. Firms classified under housing construction in the auction sample usually

operate across several sub-industries, as illustrated by the examples in Table A.9.

Public sector construction is not equivalent to private sector jobs. For example, firms must comply
with government rules and procedures, covering everything from wage rates and inspection protocols
to the formatting of correspondence. These requirements are largely determined by states and
vary across jurisdictions. Pre-qualification prior to bidding can be demanding: among required
certifications and documents, submissions can include fully written safety programs, trainings
documentation, and reference letters on past performance.'’ Nearly all states also require proof
of bonding capacity, a government-mandated form of insurance that is itself difficult to obtain.'®
Once qualified, preparing an individual bid proposal remains itself resource-intensive: Liscow et al.

(2023) report that the average submission is 164 pages of forms. If these pre-auction procedures are

costly to firms, they may generate high equilibrium markups.

ISKroft et al. (2020) combine tax data on all U.S. firms with DOT auctions from 28 states. They estimate that firms
participating in auctions represent 12% of sales among all firms coded as construction under NAICS.

16Data details are provided in Section 2.2 and Appendix B.2.

17For examples, see Maine and Georgia DOT prequalification documents.

18See Congressional Research Service Report “SBA Surety Bond Guarantee Program” Updated July 18, 2025 for a
discussion of the difficulty in obtaining surety bonds, particularly to small businesses.
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2.2 Data

Auction data My main data is state Department of Transportation procurement auction bids for
all contiguous U.S. states. Observation start dates for states range from 1993 to 2007, but all
are observed until 2024. I define the analysis window to begin in 2002, when 85% of states are
observed.'” The data come from a construction data software company; data compilation details,

state idiosyncracies, and summary statistics of variables by state are reported in Appendix B.1.

In total, I observe 370,000 auctions with 1.3 million bids. An important feature of the setting is that
I observe all bids, not just winning bids, which is a common limitation of auction datasets. The data
covers the allocation of nearly 1.4 trillion (real) dollars spent by the U.S. government, accounting
for roughly half of total U.S. road-related infrastructure spending.?’ The main excluded spending is

roadwork conducted by local governments, primarily for local street repairs.

The data include winning bids but exclude any changes in price due to renegotiation. To gauge the
magnitude of these changes, I collect separate data on change orders and final costs for four states.
Appendix Table A.1 reports mean and median cost overruns. The largest median percentage overrun
is 3.25% in Colorado, while the smallest is -3.87% in New York, where projects actually come in

under budget on average. Although renegotiation matters, baseline winning bids remain first-order.

The data also include firm names, which I use to match firms across states.2! The details of this
match process are in Appendix B.2. Additional variables included in the data are the project date,
the county of the project, the engineering type (defined as the input category with the largest share
of spending), and “tons," the sum of all amounts of bid-schedule items measured in tons. The latter
is the best available measure of project size. I have a brief description of the project, which I use to

).22

assign each project to one of nine categories with a large language model (LLM).“~ Details on the

classification procedure are in Appendix B.3.

Finally, I have the full set of project bid-schedule items from 2014-2023. This is the complete list of

19When relevant, I restrict to a balanced panel or report balanced panel results in the appendix.

20The data documents $66 billion spent in 2023 via DOT auctions, while all levels of U.S. government combined spent
approximately twice as much, $127 billion, on road-related infrastructure, according to the OECD survey “Investment
Spending in Transport Infrastructure”.

21T assume each firm name uniquely identifies a firm. This assumption appears reasonable based on the validation
exercise. The main challenge arises from cross-state formatting differences.

22Implemented via OpenAl’s API; see https://platform.openai.com/.
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input items, units, and quantities for every project. The items are highly specific; an example item
might be “Galvanized reinforcement steel", or “Hot-mix asphalt base course 10in". Item identifiers
and descriptions are unique to each state, allowing me high specificity in controlling for project
characteristics within states over this decade of data. This project bid-schedule data is the main

dataset used for the model estimation.

Additional data I obtain data on firm locations and start years from Dun and Bradstreet, a commercial
provider of firm-level data and analytics. I obtain all firm from their database with SIC code 16,
“Heavy Construction, Except Building Construction Contractors", and all firms with SIC code 15,
“Building Construction - General Contractors and Operative Builders." Appendix B.2 provides
details on the matching procedure. Finally, I obtain data from the Census on demographic variables

across counties, and from the Bureau of Labor Statistics on price indices.

Summary statistics Table 1 reports summary statistics. Panel A summarizes the data at the auction
level, starting with the project shares by the five most common engineering types. Asphalt jobs
are the most common, followed by bridges and grading work. The most notable statistic is that the
median number of bidders is three, a key fact discussed in Section 3. The variation is large, with
a standard deviation of 2. Panel B summarizes the data at the state—year level, showing that the
average state has nearly 300 auctions per year, though the distribution is skewed: on average 79
auctions account for 80 percent of annual spending. The average state—year has 145 distinct bidders
and 84 distinct winners, a relatively large number given the small average number of bidders per

auction.

Panel C reports bidder-level statistics. On average, firms appear for eight years, bid in 51 auctions,
and win 14. Firms typically bid in three different types of auctions — for the most part they operate
generally instead of being specialized. Thirty-seven percent never win at all, suggesting many test
the market but do not stay. However, these firms account for only 2% of all bids, so they are not
consequential in the market at large. I identify 12% of firms in the data as operating in multiple
states. Because identifiers are at the state level, I conduct this match using both name matching and
a large language model; detail and validation results are in Appendix B.2.>> Among firms that ever

win, the interstate share is 18%. This share is low given that, aside from the Rocky Mountains and a

23My matching approach minimizes false positives and validation implies about a 10% under-count, so a corrected
estimate is that 13% of firms are multi-state.
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Variable Statistic ~ Value
Panel A. Auction statistics

Engineering Type: Asphalt Percent  41.7%
Engineering Type: Bridge Percent  18.9%
Engineering Type: Grading/Excavation Percent  14%
Engineering Type: Uncategorized Percent  13.6%
Engineering Type: Concrete Misc. Percent  2.4%
Tons awarded Mean 13765
Bidders per auction Mean 3.63
Bidders per auction Median 3
Bidders per auction Std. dev  2.14
Panel B. State statistics

Auctions per year Mean 294
Auctions per 80% yearly spend Mean 79
Bidders per year Mean 145
Winners per year Mean 84
Panel C. Firm statistics

Auctions Mean 51.37
Wins Mean 14.12
Years active Mean 7.54
No. types Mean 3.01
Never win Percent  36.9%
Multi-state Percent  12.4%

Note: Panel A presents summary statistics at the auction level.
The five types shown are the five most common auction types.
Tons is the total sum of all bid-schedule items that are measured
in tons. Panel B averages across each state year. Panel C presents
statistics at the firm level. The last two rows gives the percent of

firms satisfying the variable.

Table 1: Summary Statistics

3 Empirical Facts

13

few other ranges, there is no natural reason a state border to segment the market.

Infrastructure Prices Keep Rising I begin by examining levels and trends in the key variables
of interest, price and competition. Starting with price, I find that over the past two decades, the
winning bid for highway infrastructure roughly doubled, as shown in Figure 1. The red line shows
the national median winning bid for all roadwork projects, which rose from $1 million in 2002 to
$2.1 million in 2024, an increase of 107%.2* The plot accounts for inflation by dividing by CPI, so
this doubling is in real dollars. This pattern extends the increase documented by Brooks and Liscow
(2023) for the late twentieth century, and shows continued price growth in the 21st century.

241 define roadwork as projects classified as asphalt or concrete pavement, or with descriptions containing specified
roadwork keywords (see appendix B.1).



It is possible the rise in winning bids could be caused by a compositional shift towards a different
class of projects. This would constitute a rise in expense, but not a true price increase. To examine
this, I plot the trend for three additional subsamples of the data, corresponding to more groupings of
more homogeneous projects. The orange line shows the trend for asphalt projects, the subset of
roadwork in which asphalt work is the primary expense.”> The yellow line shows the trend for bridge
projects, which is a separate category. Both groups have similar increases for winning bids, growing
by 134% and 96%, respectively, over the full period. The final line (light blue) turns to project size,
plotting the median winning bid for projects between the 45th and 55th percentile of native tons, the
best proxy for size available in the data.’® An advantage of tons is that it captures real differences
between projects covering the same length of road with different intensities of reconstruction. A
disadvantage is that it only captures inputs measured explicitly in tons. In Appendix Figure A.3 Panel
(b) I report a robustness check with hand-collected data for six additional states with a converted
tons measure regardless of native units.>”’” When controlling for native tons, the price increase is

larger, at 150% over the period.

2 For example, road widening projects in which excavation and earthwork is the primary expense are excluded.

26Native tons is the total tons of all inputs that are measured in the unit tons.

2IThe converted tons measure converts all asphalt amounts to tons from their native units. I use standard conversions
between volume, weight, and area for asphalt, described in detail in Appendix B.4. Because I only have bid-schedule
data starting in 2014, I hand-collect additional data covering the full period for six states. While quite noisy, the measure
appears compatible with the price increase.
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Figure 1: Winning Bids Are Rising Over Time
Note: Figure plots the median winning bid of DOT infrastructure projects between 2002 and
2024. All prices control for inflation and are in 2023 dollars. The blue lines show medians for
projects in the 45th to 55th percentile of size, defined as the total tons of input items measured
in tons. The percentiles are defined separately for each state. The dashed vertical line marks the
beginning of the detailed data, indicating the period covered by the structural estimation later in
the paper. Figure A.3 Panel (a) shows analogous trends for a balanced panel of states.

The rise in prices cannot be easily explained. Appendix Figure A.4 Panel (a) shows that the upward
trend in prices is just as steep for projects in rural counties and located on flat terrain. Panel (b) shows
that the construction PPI has remained flat over most of the period, and average construction wages
over the period have not grown at all. Strikingly, the national unionization rate in the construction
industry fell by 38% over the period, from 16.7% to 10.3%. Meanwhile, the price of crude oil rose
on net since 2002, but fell substantially in 2011, completely at odds with the pattern of winning
bids. Crude oil is both the main feedstock of asphalt and the main determinant of fuel and energy
prices. Asphalt prices moved with crude oil through about 2010 — nearly doubling and then easing
— consistent with the discussion of cost drivers in Mehrotra et al. (2024) and suggesting that asphalt
likely contributed early on. Yet a back-of-the-envelope shows only about a 10% impact on total

project prices, compared with the 53% increase I observe.?® It cannot explain the laer period, a fact

28Calculation uses asphalt at a conservative 30% of pavement materials, materials at about 40% of project cost
(Strassner and Moyer 2002, Table 4), and the 80% rise in asphalt prices.
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corroborated by the PPI for highway and roads input goods, a new BLS series since 2015, which is

very flat, except for a slight post-Covid rise.

Overall the evidence points to substantial real price increases not explained by shifts in project type,
location, size, or, for the most part, input costs. I cannot rule out all production-cost drivers or
changes in project complexity. Accordingly, in Section 4 I control for detailed project inputs using
machine learning and then reverse engineer total production costs from observed bidding behavior,

yielding an estimate that captures all cost increases borne by firms.

Price Increases across States are Correlated with Competition Measures I next turn to differences
across states. Geography, precedent, and DOT institutional silos produce substantial variation in
engineering design across states, confounding simple price comparisons. Unfortunately, engineer
terminology in bid-schedules does not overlap across states, preventing the use of these covariates
to control for design differences. Appendix Table A.3 illustrates the problem with California and
Kentucky. Raw winning bids in California dwarf those in Kentucky by an average of $9.2 million.
However, the gap narrows by 82% to $1.7 million after controlling for just a few coarse project
design covariates.”” To reduce the impact of omitted state-level design variables, I rely on the
panel aspect of the data and focus on within-state differences. Later, I show that under plausible

assumptions, markup level estimates are immune to this bias and can be compared across states.

Table 3 reports correlations between within-state changes in prices and changes in covariates of
interest from two-way-fixed-effects regressions.’® Notably, most of the input price, wage, and
demographic covariates have no statistically significant correlation. This includes the coefficient
on the state prevailing wage, a policy that has generated discourse (Kessler and Katz, 1999).3!
This is perhaps because the Davis—Bacon Act, the federal prevailing wage law applying to all
projects receiving federal funds, is the binding constraint. Regardless, while these production side
variables show little correlation, there is a strong positive correlation between within-state increases
in price and changes in competition-related measures. States that experienced relatively larger price

increases also saw relatively larger declines in the number of active firms, the Herfindahl-Hirschman

29Under the logic clarified by Oster (2019), instability of coefficients with respect to observables should raise concerns
about selection on unobservables.

30 Appendix Table A.4 reports estimates from parallel regressions that omit state fixed effects. Because project designs
differ across states, the resulting correlations are difficult to interpret.

31The coefficient is identified by six states that repealed their prevailing wage law over the period.
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Index, and the average number of bidders per auction. These results are purely correlational, yet the

magnitudes are non-trivial and motivate further investigation.

Within-state correlation

Covariate Estimated coeflicient (SE)
Log avg. petrol product price 0.147 (0.267)
Log construction wage -0.014  (0.021)
Pct unionized 0.006* (0.003)
State prevailing wage law -0.037  (0.062)
Log population 0.102 (0.126)
Log median HH income -0.027 (0.025)
Log construction establishments 0.172  (0.258)
Log firms in market -0.266***  (0.039)
Herfindahl-Hirschman Index (0-1) 0.489***  (0.162)
Log Avg. Bidders -0.199***  (0.072)
State FE yes

Year FE yes

Observations (by row): 927, 927, 927, 815, 530, 927, 927, 927, 927, 927
Adj. R? (by row): 0.813, 0.813, 0.814, 0.813, 0.820, 0.813, 0.813, 0.822, 0.815, 0.815

Note: Table reports estimates from a log-linear two way fixed effect regression of prices (log
winning bids) on covariates. The first covariate is the log numer of firms that win any auction in
a given year, the second is the Herfindahl-Hirschman Index, and the final is the log number of
average bidders per auction. Results are reported the unbalanced and balanced panel.

Table 3: Descriptive Evidence: Price and Competition Indicators

Auctions have Few Bidders I provide new summary statistics on competition in U.S. transportation
infrastructure nationally. Figure 2 plots the share of auctions with one, two, or three bidders over
time. Overall, most auctions attract few participants. Across the sample, the median is three bidders,
and nearly one third of auctions have only one or two bidders. These numbers are more extreme
than previous findings in the auction literature; seemingly, the states historically most willing to
release data were those with above average competition, perhaps due to general higher administrative

capacity.

The time trend in the number of bidders can be broken into two parts. The 2002 to 2009 period reflects
the tight link between private sector and public sector construction. As the private construction sector
surged with the housing boom, auction participation dropped, driving up the share of low-bidder
auctions. With the onset of the Great Recession, this pattern flipped, as stimulus (and lower

opportunity costs) boosted public sector construction.

In contrast, the post-2010 period is marked by a secular decline in bidder participation. In 2010,

auctions with one to three bidders made up 47% of the total. By 2024, this share had risen to 63%.
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Appendix Figure A.5 restricts to roadwork projects and shows a similar increase from a higher
baseline: one to three bidder auctions accounted for 59% of all roadwork projects in 2010, and 72%
by 2024. The share of roadwork auctions with just a single bidder increased by 40% over the period,
from 13% to 18% of all roadwork projects. It is the consequences of this post-recession trend that

the model section of this paper tries to understand.
housing boom + great recession COVID-19 pandemic

0.6

0.4

Share of auctions

0.0 start of detailed data

2005 2010 2015 2020 2025

I 1 bidder 2 bidders 3 bidders

Figure 2: Macro-economic Effects and Decreasing Bidder Trend
Note: Figure plots the share of auctions by number of bidders from 2000 to 2024. The first
shaded gray region marks the start of the housing boom and the end of the Great Recession, and
the second marks the COVID-19 pandemic. The dashed vertical line marks the beginning of
the detailed data, indicating the period covered by the structural estimation later in the paper.
Appendix Figure A.5 Panels (a) and (b) plot analogous graphs for the balanced state panel and
the roadwork only panel respectively.

One simple mechanism behind the post 2010 fall in bidders could be that infrastructure demand
grew faster than firms could enter the market, resulting in fewer bidders per auction. This seems
especially possible in the later period given the additional funds allocated to highway infrastructure
by the IIJA in 2021. Indeed, entry into the market over the entire period is very limited. As shown
in Appendix Table A.2, of all bids in a given year, only 2.5% are placed by a firm new to the market
that year. This number increases slightly when also treating firms that cross state lines into new

local markets as entrants, but only to 3.3%.32 However, the story of limited entry and rising demand

32The rarity of entry is also inconsistent with a model of low entry barriers and high turnover, as one might expect in
contestible market theory (Baumol et al., 1982).
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cannot be right, because demand actually did not rise over the period. Appendix Figure A.6a shows
that the number of projects auctioned by the government has been flat since 2010. Appendix Figure
A.6b corroborates this by showing the amount of infrastructure (as measured in total tons) also did
not increase over the period, although total spending did.?*> The cyclical trend in annual projects
does correlate with the cyclical patterns in bidder participation, but there is no relation in the long

run between demand and bidder decline.

First Bid Second Bid Gaps Decline with Bidders One simple indicator of the effect of the number
of bidders on price is the gap between the winning bid and the second-lowest bid. This “bid gap"
equals the loss to the government if the winning bidder disappeared and all else remained equal.
Figure 3 plots the national median bid gap by number of bidders for all roadwork auctions over the
sample period. Bid gaps are residualized by state and re-centered at the national average to account

for omitted state-level factors that may shift both bidder counts and gap levels.

As the plot shows, the bid gap declines convexly as the number of bidders rises. Since by construction
there is no such measure in one-bidder auctions, the largest estimated bid gap is for two-bidder
auctions, where the median gap is nearly $300,000 (2023 dollars). The gap falls steeply with
additional entrants, leveling off around six bidders at roughly $175,000. Appendix Figure A.7 shows
the same pattern appears across different sub-samples, including asphalt projects and projects in the

45th—55th percentile of size.

33The lack of an increase in projects built under the Biden administration may be surprising, but infrastructure output
during this period remains debated. For discussion, see Zachary Liscow, “Highway investment probably didn’t go up
under Biden,” Briefing Book, March 3, 2025.
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Figure 3: First Price - Second Price Bid Gap by Number of Bidders

Note: Figure plots the national median difference between the second-lowest and lowest bids by
number of bidders in the auction for all roadwork auctions. To account for state omitted variables
that affect both bid gaps and number of bidders, gaps are demeaned by state with the national
mean added back. When taking means, 1% of the sample is trimmed due to large outliers.
Appendix Figure A.7 plots analogous bid gaps for three different subcategories of auctions:
bridges, asphalt only roadwork, and roadwork projects within the 45th to 55th percentile of
native tons, which proxies for a constant size.

Unfortunately, the bid gap is not a measure of the price effect of a new bidder. For it to be so, one
would have to make a strong assumption on the composition effect — the new bidder is the low
bidder — and the strategy effect — the incumbent bidders do not adjust their bids. While the failure
of these assumptions produces oppositely signed biases for the effect of a new bidder, both failures
generate a downward bias for the change in the effect of a new bidder.>* In other words, the decline
in the bid gap as the number of bidders increases in Figure 3 is a conservative estimate the decline

in the effect as the baseline number of bidders increases.

Direct Evidence that More Bidders Reduces Prices Exogenous shifts in the number of bidders are
rare, which means that most of the evidence on how participation affects prices comes from theory
or simulated counterfactuals. The quasi-experimental results that do exist have mixed results.>> A
small impact is consistent with theory if in practice the variance in costs across firms is small. In

this case, any bid above cost is quickly undercut, keeping markups small even with few competitors.

341f the first assumption fails, the bid gap overstates the savings to the government, and this failure is more likely
when the baseline number of bidders is large. If the second fails, the bid gap understates the savings, and this failure is
more likely when the baseline number of bidders is small.

35For example, an Italian publicity reform was found to increase bidders by 9.3% and the winning rebate by 7%
(Coviello and Mariniello, 2014). However, new e-procurement policies in India and Indonesia were found to increase
participation meaningfully (increase of 0.4 bidders from a baseline of 2.9), though not statistically significantly, despite
having a precise null (at least greater than -.02%) effect on prices (Lewis-Faupel et al., 2016).
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Of course, theoretical predictions would also fail if firms systematically fail to bid strategically.

I directly estimate the average causal effect of the number of bidders on price, capturing the total sum
of the composition and strategic effects. To identify the effect, I use plausibly exogenous variation

in the number of bidders. I would like to estimate

log(pricejct) =a+ BN+ €jer, (1)

where log(price;,) denotes the winning bid in auction j in year 7 and county ¢, and N, is the
number of bidders in the auction. The parameter of interest is S, the average causal response to a

unit increase in the number of bidders.

The primary challenge in estimating f is that N ., is endogenous, since firms choose to enter auctions
based on project characteristics that also affect price. This generates a positive correlation between
the number of bidders and the error term, Cov(N ., €;.;) > 0. The resulting identification problem
is formidable, since it requires finding an exogenous shifter of the number of bidders that does not
also affect prices. A secondary challenge is that bidders do not observe the number of competitors
ex ante. Consequently, I am interested in variation in N/, that also impacts bidders’ expectations,
as would be consistent with a shift in the equilibrium distribution of N, the change of interest.

Unpredictable shifts, on the other hand, would likely underestimate the total effect.

To address these concerns, I first summarize at the county level, taking the average of log price,
number of bidders, and time-varying covariates for each county-year.*® County-level changes are
more likely to be salient to bidders than auction level variation. I start by estimating the following

within-county linear regression:

log(price,,) = BN + Axer + YT + fe + €ct, (2)

where 7 is a time trend and u. is a county fixed effect. The variable x,; is average native tons of

inputs, my main proxy for size, described in Section 2.2. In order to identify the parameters of

39T balance the panel across counties, which drops 36% of observations.
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interest, this model needs to satisfy strict exogeneity.>’” While this specification may reduce the
bias in equation 1, one is likely concerned that strict exogeneity is violated due to time-varying

unobservables that are correlated with both county average price and number of bidders.

For this reason, my preferred approach uses an instrumental-variable (IV), constructed using distance
between firms and auctions. Because transportation costs of equipment, materials, and labor are
substantial, distance is a strong predictor of firm auction entry. Appendix Figure A.9 reports
estimates from a linear probability model of auction entry on distance deciles. At distances under 3
miles, firms enter about 14% of auctions, whereas at 100 miles, the probability falls below 2%. I
construct the instrument using firms for whom the given state is a secondary market to ensure their
establishment location is exogenous to the affected auctions. Appendix Figure A.8 visualizes the
variation used in the instrument, showing a single firm’s expansion over time. The expansion across
the border is notably lumpy in time and the auctions entered are driven by distance, suggesting this

instrument has a strong first stage.

Specifically, to construct the instrument, I identify each firm i’s home state 4; as the first state they
enter. For state s and year ¢, I define an out-of-state bidder as a firm with at least one bid in s during
t whose home state is not s, i.e. if |bid;;| > 0, h; # 5. I calculate the distance between i’s location
and the county of every auction in s during #. Details on the construction of the distance measure
are in Appendix Section B.5. I construct a county level indicator for whether there is an out-of-state

bidder within 100 miles:

N¢ = y1(min(die;) < 100 miles) + X + & 3)

I choose 100 miles based on the entry and distance regression reported in Figure A.9, but report
results with varying this threshold in Appendix Table A.5. For the instrument to be valid, I require

(i) distance strongly predicts auction entry (relevance); (ii) firm locations are as-good-as random

37Strict exogeneity requires that, conditional on the county fixed effect, the entire path of the error is independent
of the entire path of the regressors: (ec1,...,€7) L (Z¢t,...r ZeT) | pe, With Zey = (Neg, xer, 7¢). 1 also present a
similar exercise using a first-difference specification in the Appendix Table A.5. Under first-differences, unbiased
estimation of 8 requires that Ae. ; is uncorrelated with the contemporaneous change in the independent regressors.
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with respect to cross-border project proximity (random assignment); (iii) out-of-state firms affect
prices only through the number of bidders (exclusion), and (iv) the instrument never reduces the
number of bidders per auction (monotonicity).>® T argue the second assumption is reasonable based
on the observation that a firm’s home state is typically its primary market (88% operate exclusively
in one state). For firms that enter markets outside their home state, the average time until entry is 6
years. The geography of out-of-state auction opportunities is therefore less likely to impact firm
location choices than in-state auction opportunities. Should this assumption still fail, the selection
bias would shrink the magnitude of the estimated coefficient.>® A potential threat to assumption (iii)
would be if out-of-state bidders have systematically lower bids than state incumbents. Appendix
Figure A.10 shows that out-of-state bidders actually have a slightly lower probability of winning
an auction, suggesting higher bids, but the confidence intervals overlap between out-of-state and

control bidders overlap.

Table 4 reports the estimated coefficients. Column (1) shows the ordinary least squares result
yields a positive correlation between the number of bidders and price, consistent with selection bias.
Column (2) shows that county fixed effects alone reduce the selection bias and flip the sign of the
point estimate. Column (3) reports the first stage for the IV regression, showing that proximity to
out-of-state bidding firms significantly increases the number of bidders in an auction. Switching
from no out-of-state bidders within 100 miles to at least one raises the number of bidders on average

by .15.

381 follow the terminology of Imbens (2014).
39 An alternative reason for estimates to be biased toward zero is if panel transformations diminish the fixed-effect
signal relative to measurement error, as emphasized by Griliches and Mairesse (1995).
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Dependent variable:

Log Bid Log Bid No. bidders LogBid LogBid Log Bid
(Within County)  (First Stage) Iv) aIv) (IV)
No. bidders 0.071™* —-0.014"* -0.125"  -0.097"  -0.152
(0.004) (0.003) (0.056) (0.050) (0.098)
dist. firm < 100mi 0.153**
(0.018)
Log tons 0.096"** 0.149™* -0.017* 0.135*  0.126™*  0.135"
(0.002) (0.002) (0.003) (0.002) (0.003) (0.002)
State FE yes yes yes yes
Time Trend yes yes yes yes
County FE yes
Year FE yes
Lag log bid yes
First stage partial F 76.26 102.79 27.48
Observations 22,050 22,050 22,050 22,050 13,461 22,050
Adjusted R? 0.125 0.562 0.303 0.471 0.458 0.459
Note: *p<0.1; *p<0.05; **p<0.01

Note: Table reports coefficient estimates from equation 1 using the strategies outlined in
equations 2 and 3. Column (3) includes a lagged outcome to account for dynamic bias in fixed
effect panel models, which Klosin (2024) shows is greater than Nickell bias. Robustness checks
to the distance threshold in the instrument are in Appendix Table A.5.

Table 4: Estimates of the Impact of Number of Bidders on Prices

Columns (4) - (6) present results from the instrument specification. All three specifications produce
estimates of a similar and economically meaningful magnitude. Column (4) directly follows the
specification in equation 3, while column (§) restricts the sample to counties within 50 miles of a
state border and, reassuringly, estimates a similar, though slightly smaller effect, suggesting that the
average causal effect of one more bidder is a roughly 10% decrease in price. To be conservative,
this is my preferred estimate. Finally, column (6) replaces the time trend with year fixed effects;
the estimate is not statistically significant, but the point estimate is similar and slightly larger in
magnitude. Appendix Table A.5, Columns (2) to (5), vary the distance thresholds. While the
smallest cutoff reduces statistical significance, overall the estimates remain consistent with an effect

of approximately 10%.

These results say that, for the set of U.S. auctions whose number of bidders are affected by out-of-state
entrants, on average one additional bidder reduced the government’s payment by 10%. This leaves
at least three questions open: (i) how do effects vary, in particular with the baseline number of

bidders; (ii) can a decline competition explain the path of rising costs over time; and (iii) what are
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the prospective savings if we were able to increase bidder participation in the future. To address

these, I develop a model below.

4 Auction Model

I present a model of bidding in procurement auctions to decompose bids into production costs and
markups. The model builds on an independent private values auction model, allows the government
to reject bids through a secret reserve price, and addresses bidders’ uncertainty about competitors
with a probability distribution over the number of bidders. Given this setup, the structure imposed by
the auction format determines firms’ optimal actions, identifying the production cost with minimal
functional-form assumptions, as shown in Guerre et al., 2000. The richness of my auction data
enables to me preserve this functional form flexibility, using machine learning methods to control
for project heterogeneity. I estimate a separate auction model by state, year, and clusters of similar

auctions, in order to full capture patterns across states and over time.

4.1 Setup

I consider the problem faced by a firm bidding in an auction to win a contract to construct a road.
Each project is heterogeneous and distinguished by project-specific covariates X. I omit auction
subscripts to simplify notation; however, covariates, costs, and bids are always auction-specific. A
firm’s optimal bidding strategy trades off raising margins above its cost of constructing the road

with its chances of winning the auction. I make the following assumptions.

(A1) Costs. Bidderi has a cost ¢; of completing the project drawn independently from a distribution
with support [c, ¢], and c.d.f. F(- | X). [ assume F(- | X) is twice continuously differentiable

on [c, ¢] and its derivative is strictly positive on [c, ¢], and f(¢|X) > 0.

(A2) Information I. Bidder i does not know the total number of bidders N, but the probability

distribution of N, py|x(n) = Pr(N =n | X) forn € {1, ..., 71} is common knowledge.

(A3) Information Il. Bidder i knows her own cost ¢;, does not know her competitors’ costs ¢ j;, but
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the distribution of all costs F(- | X) is common knowledge.*’
(A4) Risk aversion. Bidders are risk neutral and therefore maximize expected profit.

(AS) Government reserve price. The government sets a reserve price r for each auction such that
bids exceeding r are rejected. The reserve price is secret, meaning it is unknown to bidders.
Reserve r is independently drawn from the distribution H(-|X), where the distribution is

common knowledge. Conditional on X, r is drawn independently from c;.

Assumption (A1) rules out a common-value setting in which firms receive noisy signals about a
shared underlying cost.*! Such an environment may generate the winner’s curse, where the winning
firm systematically underestimates costs.*> As discussed in Section 2.2, empirical estimates of post-
auction renegotiation are modest, with the median ranging from -4% to 3% for four sampled states.
While not a test, if the winner’s curse were prevalent, one might expect substantial renegotiation to

cover losses.

Assumptions (A2) and (A3) together reflect the reality that bidders have limited information on the
competitors they face. While bidders may be informed about the pool of potential competitors, it is
effectively impossible to know how many will ultimately bid. According to a survey by Liu et al.
(2022), most DOTs publicly disclose no information on approved bidders before auctions. For the
remainder that do, these lists are often large and bidders can at most form a prediction. As shown in
Table 1, on average there are 145 unique bidders and 84 unique winners per state per year. Firms do
not partition neatly across sub-markets, as the majority of firms bid on multiple project types and
in multiple locations: the average firm bids in 11 counties; among firms with at least 10 bids, the

average is 25 counties.

Assumption (A4) assumes firms maximize their expected profit. Assumption (AS5) models the

401t would be possible to add firm heterogeneity in the cost distribution. It does not matter in this case, as firms do
not know who their competitors are when bidding, so their strategy is only a function of the distribution over all possible
firm types.

41 A1 also assumes finite (bounded) support and positive mass at the upper endpoint ¢, which provide the initial point
needed to apply the fundamental theorem of ODEs to prove a unique equilibrium bid function, as in Maskin and Riley
(2000). I conjecture that the argument here follows by adapting their Proposition 2.

42 Alternatively, it may induce bidders to shade their bids conservatively, as Hendricks et al. (2003) provide evidence of
in offshore oil lease auctions. In that setting, the value of a lease depends on the uncertain size of subsurface oil reserves.
In contrast, roadwork projects have far fewer unknowns, as they are standardized and have detailed specifications
provided in advance.
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government’s rejection of bids judged “unreasonable," i.e., bids that fail screening heuristics. Most
often, these rules incorporate a percentage markup over the DOT’s engineering estimate, along with
other factors (see Liu et al. (2022)). Other papers have differed in their approach to modeling this
feature, often treating the government as an additional bidder, or ignoring it entirely.*> As more than
10% of auctions in my data have a single bidder, it is necessary to directly account for the threat of

rejection.

I model the government as having a secret reserve price r with distribution H(r) = Fp(r/1.15),
where F}, is the distribution of bids. This assumption mimics the common screening threshold of
1.15 times the engineer’s estimate. Appendix Figure A.11 shows that, across the 18 states with
engineer’s estimates in the data, the bid distribution closely matches the distribution of engineers’
estimates. This is not surprising, as past bids are the main information engineers have with which
to form their estimation. While imperfect, this assumption offers a parsimonious representation
of a partly qualitative process and avoids modeling the government as a strategic bidder. It is
conservative: in practice, DOTs are often hesitant to reject bids, so any bias in markup estimates is

likely to be downward.

Each firm i in the auction submits a bid b; that maximizes its expected profit. Firm i’s profit
conditional on winning is simply the difference between the bid and their production cost. Firm i’s

expected profit prior to the outcome of the auction is

En; = (b; — ¢;) Pr(b; : by <min ({b; : j #i},r) | X). 4)

While in general no closed form solution exists for a standard first-price auction with a secret reserve
price, there exists a Nash equilibrium bidding strategy S, which is symmetric and increasing in

costs.** Consequently, the profit condition for bidder i can be written as

“3For example, Li and Zheng (2009) , Bajari et al. (2014), and Krasnokutskaya and Seim (2011) assume no reservation
price for Texas and California DOT auctions, while Bhattacharya et al. (2014) assume a publicly observed reserve price
set at 1.5 times the engineer’s estimate for Texas auctions.

441 assume this is the unique equilibrium, following Maskin and Riley (2000), which provides the uniqueness proof
for a similar class of auctions.
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By = (bi—c) ), [Pr(N =n|X)(1-F (ﬁ—‘<bi>|x))"_l] (1= H(bi|X),

relying on the symmetric increasing bid strategy to replace the probability firm i wins with the
probability all firms other than i draw costs lower than i’s cost, and to write the inverse bid function.

The first order condition with respect to the bid defines the bidding strategy as a differential equation:

Pryin (b;
Blc)= ¢ - P,L(bl) : &)
— Fin (00 |y, —p(cy)
variable cost
firm margin

The derivation is straightforward and is in Appendix D.1 with the explicit equation. Here and
throughout the paper, I define the margin as the difference between the bid and the marginal cost
and the markup as the margin over cost. The margin decreases as the probability a high number of
firms enter the auction grows. The amount it decreases is mediated by the underlying distribution
of costs. To understand the importance of the cost distribution intuitively, consider a degenerate
distribution where all firms have the same cost. In that case, the equilibrium strategy is to bid one’s

true cost — the margin is O if there are at least two bidders. On the other hand, if there is variation

/

in cost draws, an additional bidder increases the magnitude of Pr/. (b;), pushing down the margin.

4.2 Identification and Parameterization

Semi-parametric Identification

My identification argument closely follows Guerre et al. (2000). Let F(-) denote the distribution
of bids. The unique equilibrium strategy means that F;,(b;) = F(B87'(b;)), using the equality
b; = B(c;). The density of bids is therefore f;,(b;) = f(B871(b;))/B (871 (b;)). Substituting these

terms into the bidding equation allows for an expression in terms of observables:
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= by - S(bi) (1 - H(by)) ’ ©)
S(bi) h(b;) — S'(b;) (1 - H(by))

where 1 — H(b;) is the reserve component, S(b;) = 3, Pr(N = n) A(b;)"! is the rival response
term, and A(b;) = 1 — F(b; | X, pyix) is the bid-distribution term. The bid distribution F is
conditional on py|x(n), the probability mass function for the number of bidders, because strategies
are conditional on py|x (n). For comparison, the standard model that assumes the number of bidders
N is known, requires that F}, is conditional on N; the analogue here is more complicated since any

shift in py|x(n) changes the bid strategy.

Since bids are observed and I have assumed H is a scaled distribution of bids, observation of
pn|x (n) renders the right-hand side of equation 6 observed, identifying costs. In practice, I will
group auctions into two clusters, a “many-competitor” and a “few-competitor" group, using machine
learning and their bid-schedule characteristics. I will estimate pyx as the empirical distribution of

N within its cluster.

Semi-parametrization Equation 6 contains high-dimensional conditional densities, the estimation
of which is complicated by the curse of dimensionality. To circumnavigate this issue, I modify the
approach of Haile et al. (2003) to essentially residualize out project-specific covariates from bids.
My approach takes advantage of my rich covariates, machine learning, and the fact that I observe all
bids, not just winning bids. The necessary theoretical assumption for the residualization is that costs
are multiplicatively separable into two components: an auction-specific term common to all bidders,

and a bidder-specific idiosyncratic term. Specifically, I assume

Cia = €Xp (X;y) UaCia; (Xas Ha, Cig) are mutually independent,

where u, is an auction-specific cost shifter. The benefit of this assumption is that it directly implies

bi, = exp (X;V) /JaEia’ (7
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where b,, is the bid corresponding to an auction with ¢;, = €4, 1.€. the cost for bidder i in a
hypothetical auction with covariates exp (X, y) uqa = 1. The proof is in Appendix D.2. Note that I
have already assumed the government reserve follows a scaled distribution of the bid; for statement
7 to hold, I require the less restrictive assumption that whatever distribution r follows, it scales with
the same exp(X)y)u, factor. This assumption, of course, is still restrictive in that it assumes the
government’s reserve fully adjusts in response to project cost shifters. While this is what most DOTs

attempt to do, they may suffer from incomplete information.

The fact that bids are homogeneous of degree one in costs means that b;, from regression (7) can
be interpreted as bids for hypothetical homogeneous projects. This individual component of the
bid is thus comparable across auctions and suitable for estimating the distributions and densities
in equation (6). The resulting estimator is semi-parametric: I have assumed that the distribution
of bids belongs to a scale family, where the scale parameter depends on covariates.*> Estimated
margins for the homogenized projects can be scaled back to true bid magnitudes by respectively
multiplying each by exp(X}y)u,. A useful implication is that the markup for the homogenized

auction is the same as for the original auction.

4.3 Estimation

Step 1: Bid homogenization I estimate In b;, as the residuals from the regression

In bia = ;ﬁ +a, + €q, (8)

where X, as a vector of covariates at the project level, including (i) fixed effects for the type of
engineering of the project and its Al-derived classification; (ii) ruggedness and rurality measures;
(iii) the logarithm of the total quantities of material, summed separately by measurement unit: tons,
cubic yards, linear feet, square yards and counts of “each"; and (iv) the logarithm of the number of

distinct material items listed in the bid schedule.

I use the equivalence between machine learning and hierarchical bayesian methods to take advantage

of my covariates and to estimate the auction random effect, a,, which controls for remaining

“Note that the probability distribution of N does not need to be homogeneous across projects for estimation.
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unobserved heterogeneity across projects. I estimate regression 8 with maximum likelihood, treating
a, as a random effect and applying a ridge penalty on the remaining coefficients to guard against
over-fitting.*® Estimation is done separately for each state, allowing the covariate—cost relationship
to be state-specific. I include year fixed effects but do not residualize by them.*’ I then normalize
every homogenized bid to a benchmark asphalt resurfacing and repair project—at national median
ruggedness and rurality—using each state’s predicted material quantities for the national median
asphalt project size (Appendix B.4). This procedure enables cross-state comparison despite differing
measurement conventions across state DOTs. For skeptical readers, note that most results do not

rely on level comparisons across states.

Step 2: Cluster auctions To estimate py|x(n), I cluster auctions into “many-competitor" and
“few-competitor" groups, and estimate py|x(n) as the empirical distribution within each (cluster,
state, year) tuple. Specifically, I apply a gradient tree boosting algorithm to predict the number of
bidders in each auction using the full set of bid-schedule items.*® Auctions are then divided into these
clusters at the median predicted bidder count. The estimated P should reflect the probality according
to bidder beliefs; although these beliefs are unobserved, Appendix Table A.14, columns (4) and (6),
shows the predicted bidder count correlates more strongly with homogenized bids than the actual
bidder count, suggesting the prediction aligns closely with bidders’ expectations. Figure A.15 shows
the distribution of the actual number of bidders across the clusters; the distributions are distinct but

overlap in the right tail of the “few-competitor" group and the left tail of the “many-competitor"
group.
Robustness Appendix Table A.13 and Figure A.13 present a summary table and accompanying

violin plots for regression 8 and two alternative specifications for bid homogenization. The first

alternative is a parsimonious baseline that retains only the project classification, engineering type,

46 An L2 (ridge) penalty on a coefficient block is equivalent to modeling that blocks as random effects if the Langange

multiplier satisfies A = % where o-ﬁ is the error variance and 72 is the variance of the prior. See Hastie et al. (2009) for
details.

4TBecause I will estimate the auction model separately by year, the cost distribution need not be homogenized over
time, so I leave time out of X,,. The coefficients y therefore absorb the effect of the project covariates in X, removing
only the covariate-driven component of time variation but still allowing costs for a fixed project to shift over time.

48The advantage of using a machine learning algorithm here, relative to bid homogenization, is threefold. First,
since I no longer have multiple observations per auction, I cannot estimate auction-specific fixed effects. Second, the
comparability of covariates across states is no longer necessary. Third, the relationship between auction entry decisions
and inputs is likely more complex than the relationship between construction costs and inputs.
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county ruggedness and rurality, and total tons. The second augments the baseline with exact quantity
measures for the individual bid-schedule items, conditional on items having passing a prespecified
threshold frequency; for example, “wet-weather pavement-marking tape" is included when it is
sufficiently common. Because the resulting set of items is extensive, I estimate these regressors

under a moderate ridge penalty. Full estimation details are provided in the appendix.

The table shows that the preferred specification achieves the lowest cross-validated root-mean-
squared error on every reported metric, and the violin plots confirm that, while the three residual

distributions are broadly similar, the preferred model yields the most concentrated distribution.

Appendix Table A.14 compares predictions of the number of bidders from the gradient tree boosting
algorithm described above to those from a penalized multinomial logit model. Columns (1) and (2)
show that gradient boosting achieves substantially higher R? values in explaining both the actual

number of bidders and the resulting bids. Figure A.14 visualizes the bidder count predictions.

5 Estimates

5.1 Estimates of Costs and Markups

Table 5 reports summary statistics of estimates for costs and margins over roadwork auctions in
the continental U.S. from 2014 to 2023. Reported costs and margins are rescaled back from the
homogenized bids to match the actual bid levels, reversing the homogenization procedure in Section
4.3. Although estimation uses all bids, I report results across winning bids only to represent realized
prices. The first panel reports auction-level summaries over all winning bids; the second panel
reports the interquartile range across state means; the final panel groups projects by terciles of

estimated costs and reports results by tercile.

Estimated margins are economically large. The mean margin is approximately $0.7 million against a
mean cost of $2.5 million. Correspondingly, the mean markup over all winning bids is .22, meaning

for the average project the government pays 22% above the production cost.** There is a wide range

“91n the broader markup literature, this estimate is quite similar to the benchmark in De Loecker and Warzynski
(2012) — though this paper uses a vastly different methodology — who report a median markup of .2 for U.S. public
firms, stable over time, though with a large rise in the right tail since 1980.
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in the estimated markup across projects, with the 25th percentile markup equal to .1 and the 75th
percentile triple that, at .34. The median markup is slightly lower than the mean, at .17, reflecting
a long right tail. To address concerns that extreme tails are due to estimation error, all means are
estimated with a 1% sample trim; Appendix A.6 shows that the mean markup is stable under larger

sample trims.>"

Variable Mean Median 25" petl 75" petl
Auction-level
Markup 022 0.17 0.10 0.34
Cost 2477 1251 401 3210
Margin 693 339 147 795
State-level (means)
Markup 0.19 0.26
Cost 2097 4100
Margin 588 879
By project cost
Small
Markup 0.62  0.28 0.15 0.67
Cost 436 416 259 608
Margin =~ 222 118 64 257
Medium
Markup 0.26  0.17 0.11 0.30
Cost 1606 1537 1158 2028
Margin 405 268 167 474
Large
Markup 0.18 0.13 0.09 0.20
Cost 7013 5129 3608 8431
Margin 1161 784 467 1436

Note: Table reports the mean and interquartile range of winning bids for roadwork projects from
2014-2023. All monetary values are in thousands of 2023 USD. The bottom and top 1% of
observations are trimmed to remove extreme tails. Appendix Table A.6 reports means under
alternative trim percents of 0%, 1%, 3%, and 5% trim; the markup stabilizes after the 1%. For
the third panel, only projects with estimated winning costs greater than $.1 million are used,
dropping the smallest 10% of auctions.

Table 5: Summary Statistics of Estimates

Some state procurement markets appear noticeably more compelling to bidders. Variation in the
markup across states is substantial. The 25th-percentile state has a mean markup of 0.19, whereas
the 75th-percentile state has a mean of 0.26. The second row in this panel shows that costs also

differ markedly across states, nearly doubling from the 25th to 75th percentile state. This variation

30 A small number (less than 3%) of estimated costs are negative. These arise when extremely low bids can only be
rationalized by negative costs, which may reflect genuinely negative costs (e.g. if a firm needs to use sitting materials)
or dynamic incentives to win, violations of the model such as non-risk-neutrality, or failure to control for some project
heterogeneity. This project pushes hardest on the third concern using rich controls, machine learning, and random
effects, though bias may persist.
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reflects a combination of differences in project design and differences in the cost of a given project
holding design fixed. Unfortunately, because detailed project covariates are defined within state,
distinguishing between these two channels is complex. However, as discussed in Section 4.2, under
the assumption of multiplicative project covariates, the markup is scale-invariant and therefore

directly comparable across states, regardless of the baseline cost differences.

High-markup states are concentrated in the Midwest and the South, as shown in the map in Appendix
Figure A.17. Kentucky stands out with a median estimated markup of 0.55, reflecting a remarkably
low average number of bidders per auction (1.6 in the estimation sample). Large markets such as
California and Texas exhibit lower markups. Rhode Island is an outlier, achieving low markups
despite its small market size. However, this likely reflects unusually high cross-border participation,
since the state has the highest share of multistate firms active within its borders (74% over the

period).

The third panel of Table 5 shows that markups decline with project size. The median falls from 0.28
in the smallest tercile to 0.13 in the largest. In auctions, markups adjust with both the distribution of
costs and the number of bidders. In the setting at hand, an additive increase in costs (a location shift
of the cost distribution) that leaves its shape and scale unchanged keeps the margin constant and
lowers the markup. By contrast, if costs increase with a multiplicative scaling of the cost distribution,
the margin increases while the markup is constant. Empirically, the dispersion of both costs and
prices appears to increase as mean increases, which would suggest larger projects see higher margins
and variable profits, and even higher markups if the effect is large enough. At the same time, bidder
counts are not fixed, and in fact increase with project size from 2.69 to 3.18, which in turn pushes
markups down. On the whole, the net effect of these two forces results in declining markups. The
model so far is agnostic about why certain auctions draw a higher numbers of bidders; Section 7

takes up that question.

Figure 4 plots estimated markups against the realized number of bidders, paralleling the bid gap
curve in Figure 3. The median markup drops by about one quarter from one to four bidders. Because
bidders observe only the distribution of bidder counts rather than the realization, the pattern is
generated by between state—year—cluster variation. The figure reports up to five bidders; beyond

this point, most auctions are classified into the high-competitor cluster, mechanically restricting the
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Figure 4: Estimated Markups by Realized Number of Bidders
Note: Figure plots the median estimated markup by actual number of bidders across all winning
bids for roadwork projects from 2014-2023. Markups are computed from estimated costs and
margins; observations with non-positive costs/markups are excluded. Bars reflect unweighted
medians across auctions (not value-weighted).

incremental effects.”’

5.2 Decomposing price growth over time

Using the estimates of costs and markups for every auction between 2014 and 2023, I decompose
the price trend over this period into its component parts. Because estimation is split by year (and
state cluster), the time trend of estimated costs and margins is allowed to be fully flexible. I first
show the difference between the actual mean price and the mean of the homogenized projects, which
are residualized by covariates, as discussed in Section 4.3. The resulting gap between the actual
and homogenized price shows the change due to changing project inputs for roadwork, which I
term project complexity. The gap would not capture changes in input prices, but such a change
would appear in the estimated production cost. The mean estimated production cost and the mean

estimated margin together sum to equal the mean homogenized bid each year.

Figure 5 visualizes the results of the time trend decomposition. The two lines show that detailed
project covariates can account for a piece of the price growth. The red dashed line shows the

mean actual bid, which rose 28% over the ten-year period. As in Figure 1, this is controlling for

3IThe slight uptick at five bidders may reflect coarse clustering; finer clusters trades off increasing the similarity
of projects estimated together with a loss in precision. The upward turn at five bidders could also arise from genuine
variation, e.g. if five-bidder auctions have higher cost variance which generates larger markups.
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inflation.’> The yellow line reports results for homogenized price, which in turn rose 18% over
the period. Consequently, project complexity alone can explain 36% of rising prices. What does
increasing project complexity look like? Appendix Figure A.16 plots trends for inputs with the
highest growth for Nebraska, a state with particularly high price growth over the period. The highest
growth inputs include a combination of new environmental adjustments, technical items such as
membrane waterproofing, and training. Additionally, the average number of inputs per project in

Nebraska increased by 19% from 54 to 64.
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Figure 5: Decomposition of Price over Time
Note: Figure decomposes the average winning bid between 2014 and 2023 into changes due to
project characteristics, estimated production costs, and estimated margins. The red dashed line
shows the mean actual bid, while the yellow line shows the mean homogenized bid. Both series
are expressed in real 2023 dollars and exclude the top and bottom 1% of bids. The dark shared
region represents the production cost and the light shaded region the markup.

The majority of the increase in prices paid over the period appears to be genuine price growth, with
64%% of the growth persisting after project homogenization. The shaded blue regions in Figure 5
separate this price growth into production cost growth and margin growth. The dark blue area

denotes mean total cost. Over the full period, estimated costs rose minimally — 8% — while estimated

The red dashed line mirrors the red line in Figure 1, with small differences arising from dropping the top and
bottom 1% of projects by bid amount prior to homogenization and from using the mean here, rather than the median, to
facilitate the decomposition.
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margins rose 44%, explaining two thirds of the real rise in price.

The absence of cost growth is notable because the cost estimated in the model represents all variable
costs of production, which together form the basis of a firm’s bid. In particular, this includes labor
costs, which are often discussed as a potential driver of high U.S. infrastructure expenses.”? It
also includes the prices of physical inputs, and also permitting costs, time delays, and the firm’s
opportunity cost. Over the decade since 2014, no portion of production costs appears to have
dramatically worsened, though prices may well be above the level they could reach if such factors

were addressed. Yet, margins, which at the start account for a substantial share of price, are growing.

6 Counterfactuals

How much would the government save if bidders faced more competition? I estimate the prices the
government would pay if each auction had one additional bidder. Unlike the previous reduced-form
exercise, the model allows me to account for the current distribution of bidders. As Figure 4
demonstrates, the effect of one more bidder depends on the current baseline. Holding bidders’
cost fixed, I estimate counterfactual bidding strategies under the hypothetical guarantee of one
additional bidder in every auction. Specifically, I shift the bidder-count distribution up by one —i.e.,
the probability mass on N bidders is reassigned to N + 1. The model makes explicit how bidders’
beliefs and strategies adjust, allowing for the decomposition of the total price effect into the bidders’

strategic response and the composition effect generated by the expanded bidder pool.

Estimation Having estimated costs under the observed distribution of bidders, py|x , I now hold
these costs fixed and derive counterfactual bids under an alternative bidder distribution, pff' - The

bidding strategy comes from equation 5, restated fully here:

3, Pr(N =n|X) (1- F(™))"" (1 - H(B))
T Pr(N =l X) (1= F(B))" (0= DG (1= H(B) + (1= F(B) h(B))

B=ci+

33For example, see Goldwyn et al. (2023).
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where I have omitted conditioning covariates for legibility. As before, S is the bid strategy, c; is
bidder i’s random cost draw, I is the distribution of costs, H is the distribution of the secret reserve

price, and F is the probability distribution of the number of bidders.

The secret government reserve price complicates estimation relative to other empirical auction
settings. If there were no secret reserve price, the equilibrium bid solves a straightforward ordinary

differential equation with solution

1 c
B=E[min{C;:j#i}|min{C;:j#i}>c]= / tg(t)dt,
G(Ci) ci
where G(¢;) = fqul Pr(N = n)(1 = F(c;))"!. Under this bid strategy, counterfactuals could be

computed straightforwardly by integrating over the mixture distribution G (c;).

With the secret reserve price, the ordinary differential equation cannot be solved analytically.
Therefore, 1 instead estimate the bid function numerically from an initial boundary condition.
Intuitively, the solver expresses 8’ directly as a function of S, iteratively tracing out the equilibrium
bid curve from this initial point. The estimating equation and implementation details given in

Appendix D.3.

Results An additional bidder lowers prices first by threatening incumbents’ win probabilities, and
second, by potentially having the lowest cost draw. Figure 6 illustrates these two mechanisms for an
example state. The shift from the estimated strategy curve S3(c) to counterfactual strategy curve
Ber(c) reflects more aggressive bidding — the strategic effect. The shift is larger for bidder i when
the probability distribution of the second-lowest cost, conditional on i winning, changes more with
entry. This varies with both the initial number of bidders and the cost distribution. Holding the
winner’s cost constant at the expected minimum cost draw, the distance between the curves isolates

portion of the price decrease due to the strategic response.

The second channel is the extensive margin. A bigger pool of bidders means that there may be a
new bidder who is simply cheaper. In this exercise, I draw new bidders from the same distribution,
though endogenous entry would likely imply a right-shifted distribution. Still, the graph illustrates
why most of the price drop likely comes from strategy, not the extensive margin. Because B(c)

flattens in the right tail, much of the gain from a low-cost draw is captured by the firm. This is
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intuitive: firms in the right tail of the cost distribution anticipate little competition. The full effect,

APrice, includes both the strategy effect and the pool effect.

Estimated strat. f(c)
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A Production Cost
(composition effect)

(b) Total Effect
Figure 6: Decomposition of Effect of Increased Competition
Note: Figure shows estimated bidding strategies under the actual and counterfactual bidder
distributions for Alabama (2023, cluster 1). Points are observed bids plotted against estimated

costs. The gap between the curves reflects the strategic adjustment holding cost fixed. The total
price effect combines this with the shift left in expect cost of a new lowest draw.

I estimate effects for all states using the 2023 cost distribution and baseline bidder counts. Table
7 reports results for the strategic effect alone and the total effect for winning bids. On average,

a guaranteed additional bidder yields just over $350,000 in savings per auction. Over a baseline
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average winning bid of $3.7 million in 2023, the savings represent a 10% fall in prices. This
finding is surprising aligned with the quasi-experimental results, given the two exercises use entirely
disparate identification strategies and sources of variation. Comparing the last two rows of the
table shows that, as in Figure 6, most of price effect in the counterfactuals comes from the strategic

margin, with an estimated $300,000 in savings.

All winning bids
Auction-level State-level (means)
Variable Mean 25" pctl  75% petl 250 petl  75% petl
Baseline
Markup 0.37 0.12 0.44 0.17 0.51
Counterfactual
Strategic effect
Markup 0.19 0.06 0.26 0.07 0.34
A winning bid ($1000s)  -286 -348 -55 -392 -184
Total effect
Markup 0.33 0.08 0.39 0.18 0.47
A winning bid ($1000s)  -358 -427 -62 -494 -265

Note: Table reports the mean and interquartile range of all winning bids for roadwork projects
in 2023 under baseline and counterfactual distributions of the number of bidders. Cost figures
are expressed in thousands of 2023 USD. The strategic effect adjusts only incumbent bidders’
strategies, while the total effect incorporates the probability that the additional bidder may win.
When computing means, the lowest and highest 1% of observations by cost are trimmed..

Table 7: Summary of Counterfactual Competition and Prices

The complexity of the interaction between the cost distribution and bidder counts is shown in the
changing markup. The strategy effect alone produces a lower markup than the total effect, although
both are lower than the baseline. This is due to the that firms that draw a particularly low cost know

they have good odds of winning even with a higher markup.

7 Entry Barriers

In the preceding sections, this paper documented large, pervasive markups in highway infrastructure
generated by few-bidder auctions. In this section, I turn from the consequences of low bidder
participation to the causes. Identifying sources of limited competition matters in particular for

policy, since remedies depend on why entry is scarce.

One common explanation for limited entry in the face of large variable profits is large fixed
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costs. There are many such fixed costs that might impact the infrastructure market. For example,
construction machinery is a substantial capital investment. Alternatively, there might be fixed
costs that are more intangible, such as the costs of complying with regulatory and administrative
requirements. At the market level, working with the government requires meeting a number of
pre-qualification criteria, which can include extensive paperwork, such as financial audits, proof of
safety procedures, and proof of bonding capacity, a federally mandated insurance for government
work. Firms in the public sector may pay additional legal fees, or additional wages to legal staff.
Firms also face fixed costs at the auction level, including the administrative cost of preparing bid
proposals, and even the cost of obtaining the necessary information about the project to make a

bid.>*

I begin by examining evidence of barriers to entry at three different levels: the construction
industry, the infrastructure market, and individual auctions. First, despite the capital-intensity of the
construction industry, construction capital appears unlikely to be pivotal. I find that infrastructure
market participants are typically established construction firms well before their first government
contract. Based on the subset of Heavy Construction and Building Construction firms with reliable
start-year data, I find a median age of the firm at first bid is 17 years (Appendix Figure A.12 shows
the full distribution). It’s also worth noting that a sizable portion of the industry leases machinery,
for whom equipment costs might manifest as variable costs, depending on lease length.>> Regardless,
it appears that most construction firm fixed costs such as building and machinery investments were

sunk prior to entry into the infrastructure market.

I now turn to auction- and market-level entry barriers.”® As detailed in Bresnahan and Reiss (1991),
fixed costs generate economies of scale, so in a larger market firms can operate under lower unit
variable profits. Consequently, in equilibrium, a larger scale means that the market can support more
firms and results in each firm having a smaller variable return on a unit of production. I apply that

logic at both the market and the auction level. My measures of scale are project size, now measured

Liscow et al. (2023) report that a one—standard-deviation increase in bid-document length is correlated with 16%
higher costs, while a one—standard-deviation increase in outreach is correlated with an 18% lower cost.

33 Machinery rental is the third largest category of intermediate inputs in the "Transportation structures and highways
and streets" industry according to the BEA Input-Output Use table (following fabricated structural product manufacturing
and ready-mix concrete manufacturing).

6By “entry barriers” I mean the classic definition of Stigler (1968): a barrier to entry is a cost of producing (at some
or every rate of output) that must be borne by firms seeking to enter an industry but not by firms already in the industry.
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by estimated cost, and state market size, measured by the number of auctions. I report the effect of

scale on the number of bidders, which is a sufficient statistic for firm variable profit, all else equal.

Table 8 reports results. Column (1) shows that doubling project cost increases bidders per auction
by 0.05.Column (2) shows that doubling the number of auctions within 100 miles increases bidders
per auction by 0.22—about 7% relative to the median of three bidders. Columns (3)—(4) push this
logic further by looking across state lines. Remarkably, doubling the number of nearby auctions
across state borders has no effect on bidders per auction. This implies that market fixed costs scale
with state boundaries. Crossing into another state requires incurring a new entry cost. In short, the
fixed costs at infrastructure market level are triggered anew with each new state, suggesting they are

the result of regulatory entry barriers.
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Dependent variable:

Number of bidders
(Project scale) (Market scale)
_ &) (©)) 3 “)
Log cost 0.047* 0.051* 0.050*** 0.050***
(0.007) (0.007) (0.007) (0.007)
Log auctions < 100 mi 0.224***
(0.017)
Log in-state auctions < 100 mi 0.239** 0.214*
(0.015) (0.017)
Log out-of-state auctions < 100 mi -0.010" -0.004
(0.006) (0.006)
Log mi to border 0.005***
(0.002)
Rurality -0.415" -0.343"*  -0.346"*  -0.353"**
(0.018) (0.019) (0.018) (0.018)
Ruggedness —0.004"** -0.004™*  -0.004**  —0.004***
(0.0004) (0.0004) (0.0004) (0.0004)
Tons (1000s) —-0.002*** -0.002***  -0.002***  —0.002***
(0.0003) (0.0003) (0.0003) (0.0003)
Type FE yes yes yes yes
Class FE yes yes yes yes
year FE yes yes yes yes
state FE yes yes yes yes
Observations 36,657 36,657 36,657 36,657
Adjusted R? 0.224 0.227 0.230 0.230
Note: “p<0.1; *p<0.05; **p<0.01

Note: Table reports estimates from regressions of the number of bidders per auction on measures
of market scale. The first column looks at project scale, measured by project cost, and the last
three columns look at market scale, measured by the number of auctions within 100 miles of
a given auction. The 100 mile threshold is chosen based on the entry-by-distance results in
Appendix Figure A.9.

Table 8: Market Scale and Fixed Costs

7.1 Auction Entry Model

I am interested in understanding sources of barriers to entry. Measuring regulation, let alone less
formal beaurocratic practices, is a complicated task (Trebbi and Zhang, 2022). I take a different
approach in this section and estimate whether market entry or auction entry costs are larger based
on observed firm behavior. To do so, I combine the results from my bidding model with an auction
entry model and, for estimation, exploit the fact that firms enter auctions only when expected total
profits are nonnegative. The model builds off of Berry (1992). Imposing zero profits at the market

entry margin provides a rough answer to whether market entry or auction-level barriers bind more.
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I start by embeding the estimated actual and counterfactual margins from Section 4.1 in a threshold-
crossing entry framework, following Berry (1992). Firms draw heterogeneous auction entry costs
from a common distribution and decide whether to enter before observing variable production
cost. The assumptions are considerable, but permit identification of fixed costs from the observed
number of entrants and estimates of variable profits. A benefit of auction setting is that I have
already carefully estimated variable profits, avoiding the linear in observables profit specification in

Bresnahan and Reiss (1991).

I assume the following sequence of events. First, firms in the market draw an auction entry
cost. Second, firms make an entry decision based on their fixed cost and expected variable profit,
conditional on covariates. I assume the firm with the lowest entry costs enter first to ensure a unique
equilibrium. Finally, firms draw their production cost and make their bid. At step one, the expected

total auction profit is given by

variable profit  entry cost
— —
Ell;, = Va - QGia

where variable profit is the expected auction margin V, = E [(b;, — ¢io) Pr( win | py(n))]. As
before, py(n) is the probability mass function of the number of bidders in the auction, b, is firm i’s
bid and c¢;, is firm i’s cost. The firm thus conditions on the distribution of its number of rival bidders,

rather than on the exact value. The expectation at this stage is also over the firm’s own cost draw.

I parameterize auction entry costs as

bia = K+ Zia@ + Pltao + O Hia,
where Z,; are demeaned firm characteristics, specifically years of experience and number of state

markets. The variables u,, and y;, indicate a common auction shock and a firm auction shock,

respectively.
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The likelihood of observing N, firms in auction a is

Pr(N,=N) =Pr(|{i : EIL;; (pn(n)) =0} > N)—Pr(|{i : EIl;, (py(n+1)) >0} > N+1).

at least N profitable under pn (n) at least N+1 profitable under p  (n+1)

The first (second) equation counts the number of firms with positive expected profits in an auction
with the covariates of @ and N (N + 1) bidders in the py(n) (pny(n + 1)) equilibrium distribution. In
other words, the likelihood is given by the probability that at least N, firms could be profitable in
the observed equilibrium minus the probability that N, + 1 would be profitable if firms shifted to an
equilibrium with one bidder per auction. I assume p,, and p;, are distributed standard normal with
zero covariance. The parameters of interest are 6 = («, @, p, o). This likelihood can essentially be

estimated similarly to an ordered probit, but with simulated firm shocks, following Berry (1992).

There are two advantages to this entry model. The first is that, unlike class threshold-crossing entry
models, I do not need to estimate variable profits on market observables. Instead, I can simply
plug in my previously estimated margins and counterfactual margins. Second, the parameters are
identified in levels, due to variable profits V, fixing the scale in dollars. This is in contrast to standard

discrete choice models, which are usually only identified up to scale.

I estimate my main results for each state using a Markov chain Monte Carlo (MCMC) procedure.
For illustration, Table 9 reports full results for Illinois; the procedure scales cleanly to all states. The
results suggest sizable entry costs, with a mean posterior estimate of $72,000 for the first bidder and
up to $446,000 for the fourth bidder. These estimates bundle all fixed costs at the auction-entry
stage, including, for example, engineer hours for plans, legal review of contract terms, bid bonds and
prequalification work, DBE documentation, and site visits. The estimates may also reflect capacity
constraints: for firms near capacity, some fixed entry tasks can become more expensive, for example
if they hire outside estimators or counsel. However, for the lowest-cost bidders actually observed to

enter, capacity is least likely to bind.
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Parameter Estimate 95% CI

Expected cost (1st entrant) -72.6 [-83.4, -62.8]
Expected cost (2nd entrant) -183.7 [-211.6,-161.5]
Expected cost (3rd entrant) -312.8  [-360.7, -272.3]
Expected cost (4th entrant) -446.3  [-515.4, -386.0]
a (experience) 0.5 [-5.1, 6.1]
a» (# states) 0.2 [-5.3,5.5]
o) 121.1 [23.0, 226.9]
o 12429 [941.8, 1599.2]

Note: Table reports estimates posterior means and 95% credible intervals
from the state-year structural model of bidding for Illinois in 2023.
Parameters include the fixed entry cost («), cost-shifter coefficients
(a1, a2), the auction-level common shock (p), and idiosyncratic cost
dispersion (o).

Table 9: Posterior Estimates

I compare auction entry costs to market entry costs by imposing a zero-profit condition at the
state—market level. This assumption is arguably reasonable given the large number of active firms; as
shown in Table 1, the average state—year includes 84 unique winning firms. Consequently, an entry
model in which firms draw heterogeneous entry costs would yield tight bounds on the difference
between fixed costs and profits.’” I therefore conduct a back-of-the-envelope calculation. I take the
average per-auction fixed cost for the first three bidders, weighting by the mean number of bidders. I
multiply by the average number of auctions a firm enters per year to obtain annual auction-entry
costs. This implies that auction-entry costs account for about 25% of total fixed costs, leaving
about 75% attributable to market-entry costs. The calculation builds on a restrictive model, as |
have assumed a Normal distribution for entry costs and further, no selection on variable production
costs. However, it cleanly separates auction- from market-entry costs. Despite greater attention
to auction-entry frictions in the empirical auctions literature, the evidence here points to larger

market-entry costs and suggests they are the more important margin.

>7The market entry condition is V(y,, + 1) < F,, < V(y,,), where y,,, denotes the observed number of active firms in

market m, V(y,,) is the variable profit per firm at that number of firms, and F}, is the fixed cost of market entry. If
OV (y»

2
WI") < 0and % > 0, then as y,, increases the bounds tighten, and for sufficiently large y,, we have v(y,,) = Fy,.
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8 Conclusion

U.S. transportation demand is growing while the physical system is aging, making it increasingly
important to understand how to reduce the costs of reconstruction and upgrades. The lessons learned
may also be relevant for other types of public infrastructure, such as the electricity grid, which is
lagging far behind goals. This paper focuses on one long-hypothesized but understudied channel:
competition in the market for infrastructure construction. In particular, I examine the role auction
competition has played in raising prices above firms’ costs of production, focusing on the direct
impact of the number of auction participants on bids. Yet market structure may further affect prices
in the long run by shaping incentives for innovation — my results may be an underestimate of the

long-run consequences of limited competition.

This paper documents that weak competition is a defining feature of U.S. infrastructure procurement.
Across the country, auctions routinely attract only a handful of bidders, and estimated markups are
large and have been rising since 2014. These markups account for more of the price growth over the
last decade than rising production costs do. I show that securing one more bidder per auction would
yield substantial returns to the government, a result that I establish with both a quasi-experimental
design and a structural model with separate identification strategies. Yet, entry remains scarce. Entry
patterns are consistent with the existence of sizable fixed costs generated by regulatory burdens
rather than physical investments. These entry costs deter participation in both individual auctions
and in the market itself; they appear largest at the state-market level. While reducing regulation
and bureaucracy would reduce prices, in some cases doing so may be difficult or undesirable, as
regulations have benefits. In such a case, increasing the scale of either auctions or market size
would grow variable profits relative to fixed entry costs and reduce markups. These results motivate
further research on barriers to entry and on other policy approaches, from informational outreach to

interstate coordination, to improve procurement outcomes.
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A Supplemental Figures and Tables
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Figure A.1: Mean spending per kilometer over complexity ( mean percent of project tunneled)
Note: Figure plots the mean spending per kilometer over mean percent of project tunneled for 59 countries. Country
averages are taken over projects, so that each project is weighted equally. When weighting each project by length, the
U.S. falls to 9th most costly. Data is from the Marron Institute at NYU.

State Mean Median Mean % Median % Source

Massachusetts -26,990 15,653  8.46% 1.67% Bolotnyy and Vasserman, 1998-2015
California 457,746 58,168  4.32% 3.25% CALTRANS, 2009-2021

Colorado 169,165 37,482  3.7% 2.1% CDOT, 1999-2023

New York City -13,052 -77,648 -2.14%  -3.87% NYCDOT, 2009-2021

Note: Table shows the cost overrun (final price minus winning bid) for four states. Data for Massachusetts comes
directly from Table 1 in Bolotnyy and Vasserman, 2023 and covers only bridges. The other data comes from the
relevant DOTs. The sample sizes are 1651, 2256, and 1265, for California, Colorado, and New York, respectively.
For the latter three states, estimates control for inflation and are in 2023 dollars .

Table A.1: Cost Overruns for Four States
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Single-family Housing Construction
Nonresidential Construction, Nec
Highway and Street Construction

Residential Construction, Nec
Heavy Construction, Nec

Industrial Buildings and Warehouses
Water, Sewer, and Utility Lines
Operative Builders

Bridge, Tunnel, and Elevated Highway

0% 20% 40% 60%
Share of firms

All construction (SIC 16, 17) Firms in auction data

Figure A.2: Shares of Infrastructure Firms and All Firms by 4-Digit SIC Code (SIC 15-16)
Note: Figure plots the distribution of firms across four-digit SIC codes. “Firms in auction data” are those matched to
the DOT auction sample by name and state, while “All firms” are Dun & Bradstreet firms in the broader SIC 15-16
construction categories. Each unique firm name is counted once. A small number of firms have multiple SIC codes;
shares therefore computed by weighting each firm’s contribution equally across its distinct SIC codes.
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Figure A.3: Price of Infrastructure Over Time Robustness
Note: Panels plot the median winning bid of DOT infrastructure projects over time, as in Figure
1. All prices control for inflation and are in 2023 dollars. Panel (a) replicates Figure 1 but
uses a balanced panel of states, which includes 41 states. In Panel (b), the dark dashed blue
shows the same exercise for the alternative measure of size, converted tons, for the six states that
have bid-schedule data since 2000. Construction of the converted tons measure is described
in Appendix Section B.4. The sold dark blue line shows the jackknife bias-corrected linear
trend estimated on data from 2000 to 2024 for the dark-blue series, based on leave-one-state-out
resampling. Leave-one-out slopes have large variation: $200, $18,000 $19,000 $21,000 $23,000
and $ 64,000 per year, and with only six states the 95% jackknife confidence interval includes
Zero.

55



2500

% 2000
8
8
- 1500
Al
o
QU
«» 1000
()
o
()
& 500
0 start of detailed data
2005 2010 2015 2020 2025
== Roadwork Roadwork, Rural =: Roadwork, Flat
(a) Price and Location
‘% 3000 3
R
3 0
g 2000 ’Af“ 2 3
[%2) / - = §
S 1000 e mmem=a 1
o
5 .
0 start of detailed data 0
2005 2010 2015 2020 2025
- Employment Index
Roadwork Construction Asphalt
PPI . . PPI Highway
Construction Crude oil Input Goods
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Figure A.4: Price of Infrastructure Over Time
Note: Figures plot the median winning bid for roadwork auctions over time, as in Figure 1. Figure (a) overlays the
roadwork median with median prices for projects located only in rural counties and only in flat-terrain counties. Figure
(b) overlays the roadwork median with three input-cost indices: (i) the Construction Producer Price Index (PPI), (ii) the
Employment Cost Index (ECI) for construction labor, (iii) the national average crude oil price, the main feedstock for
asphalt, and (iv) the PPI for Net Inputs to Highways and Streets, Goods. This index is only available since 2015. All
four indices are also divided by the CPI for comparability.
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Figure A.5: Macro-economic Effects and Decreasing Bidder Trend: Robustness

Note: Figures plot the share of auctions by number of bidders over time, as in Figure 2. The dashed vertical line marks
the beginning of the detailed dataset used later in the paper, indicating the period covered by the structural estimation.
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Metric State Market Entrant Procurement Market Entrant

Share of bids 3.3% 2.4%
Share of wins 3.0% 2.4%
Share of value 4.9% 3.8%

Note: Table reports the share of bids, wins, and total contract value captured by firms in the year
they enter the market. Data begin in 2010 to include all states while allowing for at a minimum
three-year lead-in period, to avoid misclassifying firms’ first appearance in the data as true
market entry.

Table A.2: New Entrants Account for Only A Minor Share of Market
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Figure A.6: Flat Infrastructure Demand Over Time, Though Rising Spending
Note: Figures (a) plot the share of auctions by number of bidders over time, as in Figure 2, along with the total number
of projects each year. Figure (b) plots the total spending each year, along with the total size of projects, as measured by
total tons of inputs.
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Figure A.7: 2nd - 1st Bid Gap
Note: Figure plots the national median difference between the second lowest and lowest bids by number of bidders in
the auction for all bridge, asphalt roadwork, and roadwork projects within a narrow range of native tons, respectively.
To account for state omitted variables that effect bid gaps and number of bidders, gaps are demeaned by state with the
national mean added back. When taking means, 1% of the sample is trimmed due to large outliers.

Dependent variable:

Winning Bid
Road projects  Asphalt only projects + Size + Complexity
California 9,222.78** 6,471.717 4,547.30* 1,733.85%*
(536.85) (520.28) (493.51) (514.73)
Log Tons of Asphalt 2,961.60*** 2,730.33**
(144.37) (233.22)
Asphalt Share of Price —9,231.65"**
(1,975.57)
Log No. items 2,169.28***
(614.53)
Constant 1,463.40" 1,530.78*** -23,295.48"*  -21,997.62"**
(250.08) (247.51) (1,231.98) (1,879.30)
Observations 3,613 2,744 2,744 2,744
R? 0.08 0.05 0.18 0.24
Note: *p<0.1; *p<0.05; **p<0.01

Note: Table shows the difference in average winning bids between California and Kentucky for projects from 2018 to
2024. The outcome is normalized by CPI and is in 2023 dollars.

Table A.3: Difference in Prices: California vs. Kentucky
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‘Within-state correlation

Covariate Estimated coefficient (SE)
Log avg. petrol product price 0.991%**  (0.286)
Log construction wage -0.006 (0.044)
Pct unionized -0.010*%**  (0.002)
State prevailing wage law 0.107**  (0.045)
Log population 0.001 (0.022)
Log median HH income 0.041* (0.024)
Log construction establishments 1.138***  (0.077)
Log firms in market -0.365%**  (0.029)
Herfindahl-Hirschman Index (0-1) 1.445%**%  (0.229)
State FE yes

Year FE yes

Observations (by row): 927, 927, 927, 815, 927, 927, 927, 927, 927
Adj. R?* (by row): 0.075, 0.063, 0.086, 0.050, 0.063, 0.066, 0.246, 0.206, 0.102
Note: Table reports estimates from a log-linear regression of prices (log winning bids) on covariates, analogous to Table

3 but without state fixed effects. Given project design and engineering vary substantially by state, the correlations are
difficult to interpret.

Table A.4: Price Growth and Covariates

Dependent variable:

A Log Bid Log Bid Log Bid
(County First-Differences)  (IV: 75 miles)  (IV: 125 miles)
No. bidders -0.014" —-0.093 -0.215"
(0.003) (0.065) (0.068)
Log tons 0.133* 0.136™ 0.133**
(0.002) (0.002) (0.002)
State FE yes yes
Time Trend yes yes yes
Lag log bid yes
First-stage partial F 55.2 59.1
Observations 19,950 22,050 20,728
Adjusted R? 0.430 0.485 0.407
Note: “p<0.1; *p<0.05; **p<0.01

Note: Table reports estimates from modified regressions from those reported in Table 4. Column shows results from a
first differences model: Alog(price). ; = YANc s+ Axc s + pir + A€ s, where Aye s = Yer — Yer—1. Columns 2-3 report
IV results analogous to column (6) in Table 4, but adjusting the threshold distance between the auction and the firm
location.

Table A.5: Estimates of the Impact of Number of Bidders on Prices
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Entry year
2000 2005 2010

Figure A.8: Example of a firm in expanding to a new state
Note: Figure plots the expansion of one representative multi-state contractor across counties. Shaded areas indicate the
first year the firm bid on a project in each county, with lighter colors corresponding to earlier years.

Means
trim Cost Margin Cost (homogenized) Margin (homogenized) Markup
0% 2603 870 1493 801 1.31
1% 2477 693 1593 669 0.22
3% 2243 604 1638 576 0.22
5% 2079 554 1643 528 0.23

Note: Table reports the means of model estimates of costs, margins, and markup, by the percent of observations that are
trimmed from each tail of the cost distribution. The markup stabilizes after 1% of the sample is trimming.

Table A.6: Means of Model Estimates by Tail Trim Percent
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Figure A.9: Estimates from Regression of Auction Entry on Distance Bins
Note: Figure plots predicted probabilities (point estimates plus intercept) from a linear probability model of a firm
entering an auction, as a function of the distance between the firm’s county and the auction’s county. Firm locations are
taken from a matched subsample of Dun and Bradstreet’s heavy construction firms. The 6% of auctions lacking county
identifiers—for example, those designated as “‘state-wide”—are dropped. An active firm is defined as one that submitted
a bid in any auction during the year, or in both the preceding and following year. All auction types are included.

B Data Appendix

B.1 Auction data

For each state year, I have a file with all lettings for the year. For each letting, I extract the job id,
the county, the letting date, a description of the job, the total tons of input required for the job, the
engineer’s estimate when available, the bidder name and id, the bidder rank, the bid, and the project
engineering “type," a variable pre-defined by the data provider as the most expensive input category

of item in the project.

States vary by their start year in the sample and their data coverage for the project description and
the engineer estimate. Data is missing when either the state does either does not record it or does
not share it with the data provider. Finally, while the tons variable is always present, states vary in
the share of projects with inputs measured in tons; this reflects both variation in project type and in
chosen units. Table A.7 below gives the min, max, 25th, 50th, and 75th percentile for each of these

variables, as well as the number of auctions per state. Additionally, all states except Rhode Island
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Figure A.10: Estimates from Regression on Indicator for Out-of-State Bidder
Note: Figure plots the mean share of wins for out-of-state entrants and the control group after removing state means;
whiskers show 95% confidence intervals. Estimates come from OLS on the state-demeaned outcome, shifted back by
the control-group mean. The left panel includes all auctions, while the right panel restricts to auctions with exactly three
bidders to control for strategic effects. Home-state observations for entrants are excluded, and the unit of observation is
firm by state.

provide county information.

variable min p25 pS0 p75 max
Start Year 1993.00 1996.75 1998.00 2001.00 2007.00
Auctions per year 37.00 99.00 214.00 346.00 952.00
Description 0.61 0.99 1.00 1.00 1.00
Tons > 0 0.44 0.68 0.72  0.77 0.93

Engineer Estimate 0.00 0.00 0.00 0.68 1.00

Table A.7: Data coverage quantiles

For much of the analysis, I restrict to sample of projects identified as “roadwork". I define these
projects as projects of engineering type as asphalt or concrete pavement, or with descriptions
containing specified roadwork keywords: pavement, grinding, paving, resurfacing, milling, route, or
roadwork. I exclude projects of engineering type bridge. This rule is ultimately very similar to using

the “roadway resurfacing and repair" LLM classification based purely on the description, described
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Figure A.11: Bid Density versus Engineer Estimates
Note: Figure plots kernel densities of bids and engineer estimates in log amounts (of thousands of dollars). The left
panel shows bids and the right panel shows engineer estimates. The sample covers the 18 states with engineer estimates
in the data. The top 1 and bottom 1 percent of bids are dropped.

in Section B.3. Roadwork auctions account for 47% of all auctions.

B.2 Firm data

The auction data include firm names and a within-state identifier, but no additional information on
the firms. To illustrate firm industries, Table A.9 reports self-descriptions and listed sub-industries

for a random sample of five firms.

Multi-state firms To identify multi-state firms, I use a three-stage process. First, I clean bidder
names using standard procedures. Second, I build candidate pairs with fuzzy string matching.
Specifically, I apply a constrained Jaro—Winkler (JW) procedure: require overall JW distance 0.20
after cleaning; require at least one shared meaningful word; require the first meaningful word to
share the same initial; if that first word has < 4 characters, require an exact match; if it has > 4
characters, allow a first-token JW < 0.08. This modified rule outperforms a simple JW cutoft and
still shrinks the candidate set substantially. Third, I classify the remaining non-exact pairs with
a large-language model (OpenAl Chat Completions, gpt-5). Each request includes the two firm
names, their states, and a fixed prompt requiring a strict “Yes” or “No”” on whether the names are the

same company, with a confidence score. I construct firm identities by taking the transitive closure
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Figure A.12: Firm Age at Infrastructure Market Entry

Note: Figure plots a histogram of firm age at the time of the first infrastructure auction bid, for the 50% of auction
participants matched to Dun Bradstreet records in Heavy or Building Construction (see Appendix B.2). To reduce
measurement error, the sample is restricted to firms that (i) bid in their matched state of location, (ii) have a first bid at
least three years after the auction dataset’s start date for that state, and (iii) have a Dun & Bradstreet “start year” prior to
the first year the database records the firm. Ages are trimmed to the 0—100 year range, with values outside this interval
treated as noise, dropping about 5% of observations. The final sample covers 17% of infrastructure firms. Relative to
unmatched firms, they are slightly more active bidders, participating in 28 auctions on average compared to 18, though
they win slightly less often, at 23% compared to 27%.

over all positive matches, assigning each equivalence class of names a unique identifier. A firm is

classified as multi-state if its identifier appears in more than one state.

Table A.8 reports validation on 100 candidate pairs, split above vs. below the 25th percentile of
the model’s confidence. 1 determine ground truth by searching each firm online and checking
websites and state records. Reassuringly, I see little evidence that extremely similar cross-state
names belong to different firms. Precision is high — 90% in the higher-confidence set and 93% in the
lower-confidence set — while accuracy is high in the former and lower in the latter. That’s by design:
the false-positive rate stays low (3% and 5%). The benefit is that identified interstate links are
reliable; the cost is a slight under-count. I quantify the under-counting with a back-of-the-envelope
exercise: fuzzy matches contribute 22% of total multi-state firms; the model finds 48% of true
matches in the most-uncertain quartile and 75% in the most-certain three-quarters; overall that’s

68% of true positives, implying the total multi-state count is under-estimated by about 10%.

Firm covariates To obtain firm locations and start years, [ use Dun & Bradstreet, a commercial firm
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High-confidence Low-confidence

Metric Top 75% Bottom 25%
Accuracy 92.0% 68.0%
Precision (PPV) 90.0% 93.3%
False positive rate 2.6% 4.8%
N 50 50

Note: Table reports validation for the LLM’s classification of candidate firm pairs as same firm vs. different firms. Pairs
are pre-filtered by a Jaro—Winkler (JW) similarity threshold. Panel A randomly samples 50 pairs from the top 75% by
the model’s confidence; Panel B randomly samples 50 pairs from the bottom 25%.

Table A.8: Validation of interstate firm identities

analytics provider, and pull all firms in SIC 16 (“Heavy Construction, Except Building Construction
Contractors”) and SIC 15 (“Building Construction—General Contractors and Operative Builders™).
I standardize names and first link exact cases. For non-exact cases, I search candidate Dun &
Bradstreet firms in the same state or in contiguous states and apply a constrained Jaro—Winkler
procedure: overall distance 0.06 after cleaning; require at least one shared meaningful token; require
the first meaningful token to share the same initial; if that first token has 4 characters, require an
exact match; if it has > 4 characters, allow a first-token Jaro—Winkler 0.07. Stronger restrictions on
the first token prevent false matches between companies that are technically similar in spelling but
clearly different firms, e.g. “PJ Construction Company" and “KM Construction Company". When
multiple candidates satisfy all rules, I retain the candidate with the smallest overall Jaro-Winkler
distance. Exact links cover 29% of auction firms in SIC 16 and 43% pooling SIC 15 and 16; the full
procedure yields a 48% match rate. A hand audit of 60 randomly sampled pairs finds 95% correct
(Table A.10).

B.3 Project Description Based Classification

I classify auctions based on brief project descriptions using OpenAI’s GPT-40-mini language model
(March 2025 release) via the chat.completions.create API. The 9 categories given to OpenAl to

classify on in Table A.11 below.
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Firm State Self-description Listed sub-industries

SCS Engineers California SCS is an employee-owned | Solid and hazardous waste
environmental consulting and | management; Renewable en-
construction firm that designs | ergy; Remediation; Carbon
and implements sustainable en- | capture.
vironmental solutions.

Dan R. Dalton Inc. Colorado Dan R. Dalton Inc. is North | Railroad bridge repair; High-
America’s heat straightening | way bridge repair; Crane re-
specialists for repairing dam- | pair; Ship repair.
aged steel bridges and con-
tainer cranes.

Cutting Edge Group LL.C New York | We specialize in civil construc- | Heavy civil; Building; Parks
tion and design work. We also | & recreation; Horizontal direc-
perform mechanical and elec- | tional drilling.
trical work to meet our client
needs.

Rutledge Excavating Inc Pennsylvania| Rutledge Excavating prides it- | Land clearing and demolition;
self on delivering top-notch | Concrete work; Erosion con-
full site development services | trol; Stormwater management;
tailored to meet your needs. Drainage systems; Utility in-

stallations; Road construction.

Dome Corporation of Amer- | Washington | We do more than build spaces— | Capital project feasibility

ica we create environments where | study; Preconstruction; Gen-
your team can grow, thrive and | eral construction; Commis-
innovate. sioning & turnover; Modern-

ization.

Note: Table reports names, state, self published business descriptions, and listed sub-industries for five randomly sample

firms in the data. Firms without public websites were excluded.

Table A.9: Firm Profiles

N

Validation
SIC group Share correct
Building construction (SIC 15) 96.7%
Heavy construction (SIC 16) 93.3%

30
30

Note: Table reports share of correct firm matches for 60 randomly sampled firms, stratified by two-digit SIC code.

Table A.10: Validation accuracy of Firm Name Match

B.4 Measuring Project Size

An accurate measure of project size is important for comparing project prices. The data includes

the total tons for every project, which is a natural measure of size. However, this measure only

includes items that whose unit is tons — projects may differ in which units they use for similar inputs,
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Category

Definition

Roadway Surfacing and
Repair

Projects involving milling, grinding, resurfacing, and overlaying
of roadways, including hot mix asphalt resurfacing, rubberized
asphalt overlays, and bituminous resurfacing.

Bridge Construction and
Repair

Bridge replacements and rehabilitations, high-rise bridge repairs,
painting, deck repairs, and waterproofing.

Culvert and Drainage

Culvert repair and replacement, stormwater pond maintenance,
drainage improvements, and minor drainage structure work.

Safety and Traffic Improve-
ments

Traffic signal upgrades, installation of cable barriers, new or
replacement guardrails, traffic signs and devices, and traffic control
improvements.

Grading and Earthwork

Clearing and grubbing, grading, slope protection, slide repairs,
and other work altering the contour of land.

Pedestrian, Sidewalk, and
Cycling Infrastructure

Construction or improvement of trails, bikeways, sidewalks, curb
ramps, curb and gutter, and safety features for non-motorized users.

Environmental and Land-

Environmental mitigation, tree trimming, landscaping, mowing,

scaping and other activities to improve or protect the environment.

Facilities Construction, renovation, or maintenance of buildings, welcome
centers, rest areas, park-and-ride structures, weigh stations, or
other facilities.

Unknown Category not specified.

Table A.11: Project categories and definitions.

particularly across states.

I use the detailed data subsample from 2014 to 2023 to show that tons is a good proxy for size within
state, but less so between states. I then use this data to construct a nationally comparable measure of

size for projects between 2024 and 2019.

Table A.12 shows that within states, log tons of a project is highly correlated with other totals of
inputs by unit, with an R? around .6. However, without state fixed effects, the R? drops substantially,
in some cases close to 0. This suggests that within a state, the amount of inputs measured in tons
and the amount of other inputs are complements. Across states, however, they substitute each other,

suggesting states have different unit preferences for the same inputs.

I construct a cross-state measure of project size as total asphalt tons. Using the 2014-2023 item-level
subsample, I restrict to projects classified as asphalt. Within those projects, I then flag the items that
are truly asphalt—keywords such as asp, hma, hot mix, plant mix, bitum, superpave, or course layers
(wear, intermediate, surface, leveling, binder)—while excluding removal, milling, grinding, saw-cut,

and coating lines. Each flagged item is converted into short tons using standard engineering factors:
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Unit B p Adjusted R?
Panel A: with state fixed effects

Log Square Yards 0.2428 0.000 0.623
Log Linear Feet ~ 0.3161 0.000 0.625
Log Each 1.6802 0.000 0.629
Log Lump Sum 1.0968 0.000 0.597
Panel B: without state fixed effects

Log Square Yards 0.1259 0.000 0.018
Log Linear Feet  0.3848 0.000 0.103
Log Each 0.5115 0.000 0.008
Log Lump Sum 0.6586 0.000 0.012

Note: Table shows coeflicients from regressions of the indicated size measure on log tons. Tons are measures as the sum
of amounts of all inputs in the project whose unit is tons.

Table A.12: Correlation between Log Tons and Other Measures of Project Size

one ton = 1.0, a metric ton = 1.1, a hundredweight = 0.056, a pound = 0.0005, a gallon of liquid
asphalt = 0.00425, a cubic yard of compacted hot-mix = 1.96, a square yard of a 1.5-inch overlay =
0.0825, and a square foot under the same assumption = 0.0092. Summing these conversions at the
project level yields total asphalt tons, along with the share of each project’s inputs and costs that
come from asphalt items. The resulting measure is more stable across states than the raw “tons”

field, which reflects only items originally recorded in tons and therefore misses variation in unit

conventions.

B.5 Measuring Distance to Firms

I construct a measure of the distance between project locations and bidding firms for the instrumental
variable regression with first stage in equation 3. I use the auction data and the procedure described
in Section B.2 to identify multi-state firms. I assign each firm’s home state / as the first state in
which it appears. I define “state entrants” for state s and year y as firms active in a state other than
their home state that year: i is an “entrant” if |bid;s,| > 0, h; # s. I obtain firms’ county locations
from the matched sample with Dun & Bradstreet data (see Section 2.2). I use only matched firms in
the Heavy Construction industry for this exercise, dropping Building Construction Firms, as the
latter is a much larger industry and therefore has a higher probability of duplicate firms names. This
match covers 60% of state entrants. I drop firms that “enter” in the first year of data for each state.

Finally, I clean the sample by restricting the sample to firms with locations in the identified home
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state and where said home state is a neighbor to the target state. Finally, I remove firms that ever

establish a location within the target state. The final match covers 13% of entrants.

Each project is assigned a location based on either the centroid of its county or, if multiple counties
are involved, the centroid of those counties. I exclude the 6% of projects referenced only by “District,”
“various,” or “statewide.” The distance between a firm and a project is defined as the distance from
the project location to the firm’s nearest establishment. Distance is calculated as the miles between

the county centroid of firm location and the county centroid of the auction locatio

C Model estimation and details

C.1 Robustness of homogenization regression specification

Model Median RMSE IQR RMSE Pooled RMSE
Baseline 0.250 0.092 0.271
+ unit covariates 0.223 0.065 0.220
+ item covariates 0.232 0.078 0.244

Table A.13: Cross-validated root mean squared error (RMSE) for three regression specifications. Median and
inter-quartile range (IQR) are calculated across states; the pooled RMSE weights observations equally. The
baseline specification includes fixed effects for engineering type and Al-derived project class, county-level
terrain ruggedness and rurality, and log total inputs measured in tons. The “+ unit covariates" specification
(preferred, corresponding to regression 8) adds log total material quantities aggregated by measurement
unit—tons, cubic yards, linear feet, square yards, and counts of “each”—and log the number of distinct
bid-schedule items; all physical quantities are converted to common units (e.g., pounds to tons). The “+
item covariates" specification further includes individual item quantities for every item used in at least 25%
of projects, along with log the number of distinct items and the count of “rare" items below this threshold.
Item effects are regularized with ridge penalties of 4 = 0.5 on the item coefficients. All specifications ridge
penalities of 4 = 1 on the auction-level intercept, and O on the baseline covariates.
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Figure A.13: Distribution of homogenized log bids by specification
Note: Figure plots violin densities of state-demeaned log bids for the three regression specifications defined in Table
A.13. Observations beyond the 0.5th and 99.5th percentiles of the residual distribution are dropped before plotting.
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C.2 Robustness of number of bidder prediction

Dependent variable:

N log bid log homogenized bid

ey 2 3 “ (&) (6)

E[N], multinomial 1.639* —0.032%**
(0.015) (0.002)
E[N], xgboost 1.239*** —-0.020"*
(0.004) (0.001)
N —-0.0005 -0.010***
(0.003) (0.001)

state FE yes yes yes yes yes yes
Projected R-squared 0.201 0.719 0 0.009 0.004 0.01
Observations 47,431 47,431 46,952 46,952 44,793 44,793
Note: *p<0.1; *p<0.05; **p<0.01
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Table A.14: Columns (1) and (2) show the correlation between the predicted number of bidders from two
models and the actual number of bidders. Columns (3) through (6) show the correlations between the number
of bidders—either actual or predicted—and both actual and homogenized bids. All models include the same
covariates: fixed effects for engineering type and Al-derived project class, county-level terrain ruggedness and
rurality, total input quantities measured in tons, individual quantities for all bid items present in at least 25%
of projects, the log number of distinct items, and the count of "rare" items below this frequency threshold.
The multinomial model is a multinomial logistic regression with a ridge penalty. The XGBoost model is a
gradient-boosted decision-tree model.
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Figure A.14: Number of bidder prediction by different models
Note: This figure compares actual and predicted bidder counts using the models shown in Table A.14. It also
includes predictions from a third model—identical to the multinomial logistic model but excluding bid schedule item
covariates—to illustrate that omitting these covariates has only a minor impact on predictions. In contrast, switching
from the penalized multinomial logistic model to the XGBoost model substantially alters predicted bidder counts.
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Figure A.15: Auction clusters based on predicted number of bidders
Note: Figure shows the distribution of auctions across the actual number of bidders — “few-competitor" and “many-
competitor" — by the predicted bidder count clusters. Clusters are based on a median split of the predicted number of
bidders from the gradient tree boosting (XGBoost) algorithm. Details on the algorithm are given in Table A.14.
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Figure A.16: Most Rapidly Growing Input Items, Nebraska 2014-2023
Note: Figure shows trends in Nebraska pay items, 2014-2023. Each panel plots the yearly share of items for the items
with the highest share growth over the period. Shares are defined as the item’s count divided by the total items that year.
Mobilization is omitted as a category, as that represents a lump sum amount and is not an input used to control for
project characteristics. Over the full period, the average unique items per project rose rose by 19% from 54 to 64.
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Figure A.17: Median Markup Across States
Note: Figure shows the median winning-bid markup by state from 2019 to 2023. Each state’s color represents the
median markup among winning bids on all roadwork projects over the period. Projects with negative cost estimates are
dropped from the sample. Projects with a markup above .3 are grouped together in the highest-color category. The
highest median markup estimate is for Kentucky, with an estimate of .54.

D Technical Appendix

D.1 Optimal bidding equation

The first order equation for the bidding firm is i

OEIT n— _
S5 = 6" a-)[Zn]Pruv =nlX) (= D(1= FE™)"2 (= £ &) (1 - HBIX)

+ Z Pr(N =n|X)(1-F(5™"))"" (- h(ﬁ|X))]+

+ 3 Pr(N =n)(1- F(B71)" (1 - H(BIX)) = 0.
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Solving for the bid strategy gives

B(ci) = ci+
5, Pr(N = nlX) (1= F(8™'1%)" (1~ H(p1))
S Pr(N = n1X) (1= F(81X))" ((n = DR (1= H(BIX)) + (1 = F(B7'1X)) h(BIX))

D.2 Proof of equation 7

The proof closely follows the proof of Krasnokutskaya, 2011 Proposition 1. I show that the
proposed bidding function satisfies the conditions for equilibrium. Note that I have already assumed

equilibrium uniqueness.

Suppose z; = ¢; - y where y € [y, y] is a common multiplicative shock observed by all bidders in the
auction. Let a(c;) denote the symmetric equilibrium bidding strategy in the benchmark case y = 1,

with distribution F of c;, density f, entry probabilities py(n) and government reserve r ~ H(a).

The first order condition for the y = 1 auction over is

S P(n) (1= F(a " (a)))" "' (1 - H(ay))

S P |1 = D(1 = Fa= (@) fla~" (@) Ty H @)+ (1 - Fla~!(@)" " h(a)

a; =c¢;+

Now consider a general auction with cost z; = ¢; - y. The first order condition is

S P(n) (1 -G (B (bi))" " (1 - K (b))

biZCl’y+ ) .
S Pn) [0 =1) (1= G (87 (1)) g (87 (b) - sy (1~ K(bi)) + (1= G (871 (b)) k(by)|

I hypothesize that the bidder strategy is B(z;) = y - « (%) I now show that this satisfies the
1_
y

differential equation. First note that 03 (Z') =y-a ( ‘) = ( ) Next, 5~ (b Y=y -a” (ﬁ)_

y y

Finally, the distributions can be written:
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Plugging these definitions into the general auction FOC gives:

bi:Ciy+

y

. 3, o (1= (o () 1= - of )
sl (= oo () e () iy (-l 3)

The final requirement for equality is on the secret reserve price, specifically that K(y - a;) = H(a;)
(and consequently, k(b;) = %h(ai)). In words, when the cost and bids are shifted by y, the reserve
must also shift by y, preserving scale invariance. One solution is to simply assume r = y - p where
p corresponds to the y = 1 auction. In practice, I make the stronger assumption that the reserve is
drawn from a distribution that is a fixed multiple of the bid distribution, so as bids scale with y the

reserve distribution scales proportionally by the same constant factor.

D.3 Counterfactual estimation

Step 1: Rearrange first order equation Let A(c) = Y, P(n) (1 - F(c))" 'and G(¢) = 3, P(n —
1) f(c) (1 = F(c))"2. Then equation 5 can be written

_ A(c) (1 -H(b) B
G(c) (L= H(b)) + A(c) h(b) B~

= A(QhB)(b-c)p'+ (1 =H(b))(b-c)G(c) = Alc)(1 -H(b) B,

b-c

= BlA(c)h(b)(b—c) - A(c)(1+ H(b))| =~«1-H(b))(b-c)G(c),
— p= (1-H(b))(b-c)G(c) ,
A(c) [h(b)(b—c)+ (1 - H(b))]
G(c) 1 - H(b)
A(c) 1+ H(b) - h(b)(b-c¢)’

=(b-c)
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where b = B(c). This is an explicit first order ordinary differential equation.

Step 2: Write the initial condition I assume the secret reserve price has a mass point at the right
upper bound of the support ¢, rather than a right tail past this point. Empirically, this makes no
difference beyond the starting point of the ODE. At ¢, the bid is b = 5(¢) = ¢. 1 use this point as the

initial value and iterate left along the empirical support of ¢ to trace out the full bid function.

In a handful of (state, year, cluster) samples, the solver fails because the denominator in the ODE
approaches zero at the boundary. To address this, I shift the starting point to (¢ — €, b), where € is
less than .5% of costs and b is a first order Taylor approximation of 8(¢ — €), as the derivative at the

boundary is zero.

Step 3: Numerically solve I estimate a separate solution curve for each (state, year, cluster) using

B =(b-c) g((z)) T ;):IZEZ;( =) and a Rosenbrock solution method for stiff differential equations,

provided by the Matlab function ‘ode23s’.
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