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Abstract

Can limited competition in procurement auctions explain the high, and rising, price of road

infrastructure in the U.S.? I assemble a new dataset covering the near-universe of state highway

auctions between 2002 and 2024. I first document thin competition: one- or two-bidder auctions

account for a third of awards, and this share has risen over the past decade. Using spatial

variation in inter-state bidder locations, I then estimate the average causal effect of competition

on prices; an additional bidder reduces prices by ten percent. To decompose bids in the data

into markups and production costs, I develop a semi-parametric structural auction model that

incorporates bidders’ uncertainty over the number of competitors they face. I show that price

increases over the past decade are primarily attributable to increasing markups, not increasing

production costs. Limited competition, in turn, is consistent with patterns generated by fixed

costs of entry, but not broad construction-sector fixed costs. Embedding the markup estimates

in an entry model, I estimate large auction and market entry costs, consistent with an important

role for procurement complexity and regulatory barriers.
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1 Introduction

American infrastructure is remarkably expensive. For example, the per-mile price paid by the

U.S. federal government to construct transit lines can be up to double that paid by peer countries.1

Despite extensive public attention, the underlying causes of these high prices remain a puzzle.2

One longstanding view is that high prices reflect high production costs, driven for example by

high labor costs or low productivity (Kessler and Katz, 1999; Goolsbee and Syverson, 2023).

However, since governments typically procure infrastructure from private firms that compete for

public contracts, often via auctions, high prices may also be driven by limited competition and

resulting firm markups over production costs. Indeed, this view is notably present in free-response

answers from transportation procurement officials in a survey by Liscow et al. (2023), where the most

commonly cited cost driver is “Competition,” followed by “Materials and Labor.” Disentangling

the contributions of markups versus production costs is vital to increasing the direct return on

infrastructure investment, and thus realizing the well-documented benefits of better infrastructure on

trade, productivity, labor markets, commuting and mobility, and consumption.3

At least three factors make it challenging to disentangle these channels in practice. First, fragmented

procurement systems across the country have resulted in scarce data, such that even simple statistics

— such as the number of bidders per procurement auction — are difficult to obtain. Second,

infrastructure projects differ substantially in scope and complexity, making projects difficult to

compare across years and across markets. Third, simple statistics do not map cleanly to conclusions

about the effects of competition: estimating these effects requires understanding firms’ strategic

behavior and their information sets — accounting, for example, for firms’ limited information about

the number of competitors they face in any given auction. Ignoring these uncertainties biases

estimates of markups.
1The average per-km cost of U.S. projects is 33%, 103%, 200%, and 680% higher than for the U.K., Australia,

Canada, and Spain, respectively, according to data compiled by the NYU Marron Institute. See Figure A.1 for a plot of
the data.

2See Smith (2017) and Vartabedian (2021) for examples of news articles hypothesizing on cost drivers.
3For trade see Limão and Venables (2001), for productivity see Donaldson and Hornbeck (2016), Ghani et al.

(2014), Baum-Snow (2014), Gibbons, Lyytikäinen, et al. (2019), for labor markets see Chandra and E. Thompson
(2000), Michaels (2008), for commuting and mobility see Gibbons and Machin (2005), Glaeser et al. (2008), and for
consumption see Gonzalez-Navarro and Quintana-Domeque (2016), among others.
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In this paper, I overcome these challenges in the context of highway infrastructure auctions in the

continental U.S. Nearly all major roadwork and bridges fall into this category, and this procurement

method embodies the most common form of infrastructure procurement worldwide.4 I first assemble

a novel dataset of 1.3 million project-level bids spanning two decades of auctions, and I use this

data to document novel facts about costs and competition in road procurement: most importantly,

that prices are rising and competition is strikingly thin and decreasing over time. I exploit spatial

variation in inter-state bidder locations to estimate the average causal effect of competition on

winning bids and find that an additional bidder reduces prices by ten percent. I then develop and

estimate a semi-parametric structural model of auction bidding that is able to decompose bids into

markups and production costs. The model accounts for firms’ uncertainty over the entry decisions

of other bidders and the government’s reserve price, and is estimated with minimal functional form

assumptions, leveraging the richness of the data. The model estimates reveal the role of markups in

historical price trends, while a model counterfactual provides price reductions from hypothetical

increases in participation. Estimated current and counterfactual markups additionally enable me to

estimate entry costs, and thus speak not only to the consequences, but also the causes, of limited

competition: I find an important role of bureaucratic costs of entering auctions and regulatory costs

of entering new state markets.

I begin by assembling panel data on the near universe of auctions for state Departments of

Transportation (DOTs) from 2002 to 2024. States are the principal governmental unit responsible

for road construction, and the vast majority of projects are awarded through sealed-bid first price

auctions. For each auction, I have a series of covariates, including a measure of size and a brief

project description. Importantly, for a sub-sample of ten years, I have the bid-schedule for each

project, which is the complete list of construction inputs. This data substantially extends prior

sources, which in the empirical auction literature typically cover only a single state or a small

handful of states.5

The data reveals new facts on the U.S. road procurement market, in particular rising prices and
4Of 40 countries surveyed by the World Bank, all primarily used design-bid-build methods with competitive bidding

for traditional infrastructure investment (World Bank, 2020).
5Liscow et al. (2023) provide the first data spanning all states through the combination of survey and public record

requests; however, the authors’ bid analysis is limited to five winning bids per state. My dataset additionally captures the
full distribution of bids across the continental U.S.
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weakening competition. I find that over the past two decades, inflation-adjusted winning bids

have more than doubled. The trend persists through a variety of sub-samples of the data, such

as restricting to similarly sized projects, and increases in the price of important inputs do little

to explain it. By contrast, within-state price trends from two-way-fixed-effects regressions are

correlated with changes in variables related to market structure, such as the number of bidders. To

my knowledge, this is the first academic study of 21st-century price growth. These results extend

Brooks and Liscow (2023), who show the Interstate Highway System spending per new mile tripled

in real terms in the 1960s–1980s, finding continued growth despite the shift from new construction

to reconstruction.6

To probe the mechanisms underlying high prices, I start by providing simple measures of competition.

I document that, nationwide and over time, transportation auctions have attracted only a small pool of

bidders. The median auction draws just three participants, and one- or two-bidder auctions account

for about a third of all projects. Since 2010, the share of auctions with 1–3 bidders increased from

47% to 63% by 2024. Declining participation occurs against a backdrop of minimal market entry

and stable demand, despite the billions of dollars allocated towards transportation infrastructure

in 2021 Infrastructure Investment and Jobs Act (IIJA). Together, these statistics provide a newly

comprehensive picture of bidder participation in transportation procurement.

Given the challenges of quantifying the impact of the number of bidders on prices, I approach this

question several times in this paper. I start by looking at gap between an the first and second lowest

bids in an auction, which provides a simple measure of the loss to government if the first bidder

were to drop out. I find this bid gap declines substantially and convexly as the number of bidders

increases, revealing to competition hinge, intuitively, on the baseline number of bidders. However,

this measure would be a naive estimate of the magnitude of those returns: it would presume which

bidder is marginal, a composition assumption, and hold other bids fixed, a strategy assumption. The

composition and strategy effects together determine the causal effect.

Consequently, the second contribution of this paper is to directly estimate the average causal effect

of an additional bidder on auction prices. Theoretical auction models often predict large returns,
6Brooks and Liscow (2023) show suggestive evidence that the 20th century price growth is caused by permitting costs

and citizen voice frictions, which are likely to be more binding for brand new construction than for the reconstruction
projects that make up modern roadwork.
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but direct empirical evidence is more limited and more mixed.7,8 This is at least in part due to

the difficulty in finding exogenous shifts in the number of bidders in real markets. The primary

identification challenge is selection into auctions, which induces a positive correlation between the

number of bidders and the error term in the price equation. I address this with an instrumental

variables strategy that exploits two sources of variation. I identify inter-state entry by firms based

outside the market of interest; such entry is rare but lumpy, and when it occurs firms typically

enter many auctions, creating plausibly exogenous and salient variation in local competition. I

interact state entry with the distance to the out-of-state bidder’s establishment, as distance is a strong

predictor of a firm auction entry. My estimates suggest that on average an additional bidder lowers

the winning bid by 10%.

I then turn to a structural auction model of bidding in order to decompose the prices paid by the

government into two pieces: markups and firms’ variable production costs. The model allows me to

(i) estimate the heterogeneous effect of additional bidders, for example, across different baseline

number of bidders; (ii) estimate whether declining competition can explain the historical rise in

prices; and (iii) quantify counterfactual returns from increased bidder competition in the future.

I build on an independent private value auction model, incorporating key features of the setting. In

particular, I account for the fact that while firms have information on the probability distribution of

the number of bidders in an auction, they do not know the exact number.9 I model the government’s

discretion to reject bids as a secret reserve price, where again, bidders have information on the

distribution but not the realization. The benefit to the researcher of the auction setting is that, under

independence assumptions and information assumptions like the above, a profit maximizing firm has

an optimal bid given their cost draw. I take advantage of this to identify the unobserved production

costs from observed bids, with minimal functional form assumptions.

I estimate the model for all roadwork auctions in the continental U.S. between 2014 and 2023, the

period for which I have the complete bid-schedule data for each project. I split the estimation by
7For example, Bulow and Klemperer (1996) show that under standard assumptions, increasing the number of bidders

by one benefits the seller more than adopting the optimal mechanism would.
8For two papers on this topic, see Coviello and Mariniello (2014) and Lewis-Faupel et al. (2016).
9A few papers incorporate uncertainty over the number of bidders, but differ in assumptions. For instance, Li and

Zheng (2009) and De Silva and Rosa (2024) model uncertainty by explicitly modeling potential entrants in mixed-strategy
entry equilibria, in particular relying on parametric cost distributions.

5



state, year, and a covariate-based cluster, allowing trends over time and across states to be fully

flexible. Joint auction estimation within samples requires accounting for project heterogeneity,

which I address by “homogenizing" bids to remove the effects of project covariates, as in Haile et al.

(2003). Building on the traditional linear regression method, I use machine learning on covariates

and absorb residual unobserved heterogeneity with an auction random effect.

The structural estimates indicate substantial markups. The mean markup is around 0.2. This

corresponds to an average per-auction margin of a bit more than $0.7 million. A back-of-the-envelope

calculation yields a total of roughly $25 billion spent above production cost over the ten year period.

While most states exhibit sizable markups, there is large dispersion across states: moving from the

25th to the 75th percentile raises the markup by 37%.

I use the model results to examine whether the rise in price between 2014 and 2023 can be explained

by decreasing competition. I find that roughly one third of the 28% realized price increase over

the ten year period is accounted for by the project observables, suggesting that even within project

type, projects are becoming more complex. More complex projects require more inputs in total and

may require novel inputs, such as environmental adjustments. Of the remaining two-thirds growth

that is real price growth, costs explain little, rising only 8%. This bounds growth on all variable

costs to the firm, including materials, labor, and opportunity costs. Increasing margins explain the

majority of the real price growth, rising by 45% over the period. Changing competition, rather than

production costs, appears to be the defining feature of infrastructure over the last decade.

How much could the government save with higher bidder participation? I solve for counterfactual

prices in the model using the most recent distribution of costs but under the hypothetical guarantee of

one additional bidder per auction. The counterfactual is able to account for the current distribution

of number of bidders — an advantage over the reduced form analysis — and decomposes the total

effect into the composition effect and the strategy effect. I find an average savings of $350,000 per

project, remarkably close to the 10% estimated in the reduced form exercise, although the identifying

assumptions have no overlap. The total effect is driven primarily by the strategic effect, suggesting

more productive entrants is a limited channel for price reduction.

Markups are large and persistent, yet firms do not enter auctions and drive down these variable

profits. In the final section, I present evidence that fixed costs are substantial, deterring entry. I rule
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out construction capital requirements, instead showing evidence of significant entry barriers at both

the auction and the state market level. These barriers are consistent with procurement requirements

playing a central role in limiting participation, in line with views that decades of accrued rules have

led to policy congestion (Klein and D. Thompson, 2024). Entry costs also imply returns to market

scale: both larger auctions and thicker demand would reduce markups.

If policymakers aim to address entry costs, it is useful to know where the bottlenecks lie. Both

measuring regulation and unwinding layered, implementation-heavy rules to identify key ones are

complex (Trebbi and Zhang, 2022). Instead, I estimate whether market entry or auction entry costs

are larger. To do so, I combine the results from my bidding model with an entry model and, for

estimation, exploit the fact that firms enter only when expected total profits are nonnegative. The

model builds off of Berry (1992) and, while more stylized than the nested bidding model, yields a

straightforward parameterization of auction entry costs. I find sizable bureaucratic costs of entry

into auctions, with regulatory market costs of entry into state markets even larger. The results

suggest policy that can lower barriers would have meaningful impacts on competition and prices.

Related Literature

This paper’s main contribution is to shed light on the competitive structure of the United States

highway infrastructure market and its consequences. Other work seeking to understand infrastructure

costs includes Brooks and Liscow (2023) and Mehrotra et al. (2024), finding evidence that citizen

voice and material input costs contributed to higher costs in the late twentieth century and in

1984–2008, respectively. Most related to this paper is Liscow et al. (2023), who combine survey data

with public records requests and finds that low state capacity plays an important role in increasing

project costs. In alignment with this paper, the authors also report suggestive evidence that fewer

bidders results in higher prices. While the aim of this project is to quantify the competition channel,

state capacity may operate in the background, affecting either firms’ production costs or their

entry decisions. Looking outside the U.S., Kirchberger and Beirne (2021) study a similar issue

with international micro-data on input prices in the construction industry, showing that limited

competition in cement generates substantial markups.

Several papers investigate distinct but intertwined questions about infrastructure. Goolsbee and

Syverson (2023) study the deterioration of productivity in the U.S. construction sector from a
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macro-accounting perspective, an issue that compounds rising costs. Viewed through the lens of

productivity growth in their paper, the question studied here becomes why infrastructure prices

have not fallen over time. Currier et al. (2023) study the quality of local road infrastructure and

estimate the distribution of the costs of poor road quality across places. Kroft et al. (2025) study the

relationship between construction production markups and monopsony power over construction

workers; they capture the public market contribution with auction data from 28 states. Finally,

Fajgelbaum et al. (2023) study the political incentives surrounding California’s high-speed rail,

a famously expensive megaproject, comparing welfare quantifications from a spatial model to

observed voting patterns.

To model procurement auctions, I build on a rich empirical literature. Since Paarsch (1992),

economists have inferred bidders’ valuations from observed bids using the structure implied by

optimal bidding strategies. Of particular relevance is the work on transportation infrastructure

auctions, which includes the following. Bajari (1997) analyzes bidder asymmetry in Minnesota

roadwork auctions. Hong and Shum (2002) examine winner’s curse in New Jersey procurement.

Jofre-Bonet and Pesendorfer (2003) estimate a dynamic capacity-constrained model in California. De

Silva, Dunne, et al. (2003) and De Silva, Kosmopouloous, et al. (2009) document incumbent–entrant

asymmetry in Oklahoma, while Li and Zheng (2009) study entry in Texas mowing contracts.

Krasnokutskaya (2011) account for unobserved heterogeneity in Michigan highway auctions, and

Krasnokutskaya and Seim (2011) evaluate small-firm preference policies in California. Lewis and

Bajari (2011) analyzes scoring auctions in California; Bhattacharya et al. (2014) quantify entry-rights

effects in bridge building in Oklahoma and Texas; and Jeziorski and Krasnokutskaya (2016) study

subcontracting. Balat (2017) examine ARRA impacts on capacity and prices in California. Bolotnyy

and Vasserman (2023) evaluate scaling auctions for bridge maintenance in Massachusetts. De Silva

and Rosa (2024) link the Great Recession’s private-sector downturn to lower Texas road prices,

and Ito (2024) show that firms in Montana signal entry intent through online questions. These

papers, and others, elucidate information, behavior, and optimal mechanism design in procurement

auctions. I build on this work with a parsimonious model that preserves key features and limits

functional-form bias. I also introduce an adjustment for bidder uncertainty over the number of

competitors in a given auction. To my knowledge, no paper yet has collected national data and used

the auction structure to evaluate markups in the U.S. as a whole.
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2 Setting and Data

2.1 Transportation Infrastructure Market Structure

Major roads and bridges in the U.S. are the responsibility of state governments.10 In a regular

year, the U.S. already allocates an annual budget of $120 billion solely for the maintenance and

development of roads and bridges.11 Recent attention on infrastructure has led to additional funding,

such as the $1.2 trillion Bipartisan Infrastructure Investment and Jobs Act (IIJA) of 2021.12 Nearly

all roadwork is procured via auctions. State-managed projects procured by different means includes

large projects requiring technical innovation, whose design is usually outsourced.13 The typical

auction should be thought of as mid-sized, routine project involving limited design innovation, such

as the reconstruction of a segment of highway.

The vast majority of projects are completed through the following process.14 First, project

specifications are designed in-house by the state Department of Transportation (DOT). Then the

contract for completing the project is awarded to a construction firm via a sealed-bid first price

scaling auction. In a scaling auction, bidders are given detailed project specifications and a list of

input item quantities, known as the bid-schedule. A bid consists of a price per bid-schedule item.

The total price of the project is calculated, and the contract is awarded to the bidder with the lowest

total.

Bolotnyy and Vasserman (2023) show that firms often bid strategically on item prices, underpricing

items for which they expect the government to have overestimated quantities and overpricing those

they believe were underestimated. As a result, item-level bids are an unreliable measure of input

costs. In this project, I focus on the total bid, which determines firms’ expected profit, and set aside

the nested choice of pricing the individual items in the bid-schedule. Consequently, the auctions
10While the federal government allocates a substantial amount of funds to transportation infrastructure, these dollars

are all reallocated to the states. Local governments are responsible for local roads, which account for 77% of the road
system but only 13% of vehicle miles traveled (FHA, 2000).

11Data from the Organization for Economic Co-operation and Development (OECD) Infrastructure Investment Survey
(2024).

12Roads and bridges were the largest category of IIJA spending, with $110 billion directly allocated.
13An example of this extreme is Boston’s Big Dig project – the most expensive highway project in U.S. history –

awarded through negotiation to Bechtel Corporation, a company with an annual revenue of $16 billion and operate at a
different scale than most roadwork firms.

14Alternative procurement methods account for fewer than 5% of DOT projects Liu et al. (2022).
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can be treated as simple first price auctions. This allows me to focus on the role of competition in

shaping total prices.

On the supply side, construction firms operate in the public sector, private sector, or both. Appendix

Table A.9 profiles a random sample of five companies that compete for government contracts;

their listed sub-industries span road construction, carbon capture, general building, and ship repair.

All five also serve private clients. This makes sense as the private sector is larger overall: a

back-of-the-envelope calculation using Kroft et al. (2020) suggests that public-sector participants

account for about 22% of sales in the construction industry.15 Appendix Figure A.2 compares the

distribution of sub-industries (four-digit SIC codes) for auction participants with those of all firms

within two-digit SIC categories Building Construction and Heavy Construction.16 Single-Family

Housing Construction alone accounts for 78% of all firms, reflecting both the dominance of this

sector and the smaller scale of typical firms. Housing remains the largest category among auction

participants, but the distribution is markedly flatter, with a similar number of firms in Highway

and Street Construction. Firms classified under housing construction in the auction sample usually

operate across several sub-industries, as illustrated by the examples in Table A.9.

Public sector construction is not equivalent to private sector jobs. For example, firms must comply

with government rules and procedures, covering everything from wage rates and inspection protocols

to the formatting of correspondence. These requirements are largely determined by states and

vary across jurisdictions. Pre-qualification prior to bidding can be demanding: among required

certifications and documents, submissions can include fully written safety programs, trainings

documentation, and reference letters on past performance.17 Nearly all states also require proof

of bonding capacity, a government-mandated form of insurance that is itself difficult to obtain.18

Once qualified, preparing an individual bid proposal remains itself resource-intensive: Liscow et al.

(2023) report that the average submission is 164 pages of forms. If these pre-auction procedures are

costly to firms, they may generate high equilibrium markups.
15Kroft et al. (2020) combine tax data on all U.S. firms with DOT auctions from 28 states. They estimate that firms

participating in auctions represent 12% of sales among all firms coded as construction under NAICS.
16Data details are provided in Section 2.2 and Appendix B.2.
17For examples, see Maine and Georgia DOT prequalification documents.
18See Congressional Research Service Report “SBA Surety Bond Guarantee Program” Updated July 18, 2025 for a

discussion of the difficulty in obtaining surety bonds, particularly to small businesses.
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2.2 Data

Auction data My main data is state Department of Transportation procurement auction bids for

all contiguous U.S. states. Observation start dates for states range from 1993 to 2007, but all

are observed until 2024. I define the analysis window to begin in 2002, when 85% of states are

observed.19 The data come from a construction data software company; data compilation details,

state idiosyncracies, and summary statistics of variables by state are reported in Appendix B.1.

In total, I observe 370,000 auctions with 1.3 million bids. An important feature of the setting is that

I observe all bids, not just winning bids, which is a common limitation of auction datasets. The data

covers the allocation of nearly 1.4 trillion (real) dollars spent by the U.S. government, accounting

for roughly half of total U.S. road-related infrastructure spending.20 The main excluded spending is

roadwork conducted by local governments, primarily for local street repairs.

The data include winning bids but exclude any changes in price due to renegotiation. To gauge the

magnitude of these changes, I collect separate data on change orders and final costs for four states.

Appendix Table A.1 reports mean and median cost overruns. The largest median percentage overrun

is 3.25% in Colorado, while the smallest is -3.87% in New York, where projects actually come in

under budget on average. Although renegotiation matters, baseline winning bids remain first-order.

The data also include firm names, which I use to match firms across states.21 The details of this

match process are in Appendix B.2. Additional variables included in the data are the project date,

the county of the project, the engineering type (defined as the input category with the largest share

of spending), and “tons," the sum of all amounts of bid-schedule items measured in tons. The latter

is the best available measure of project size. I have a brief description of the project, which I use to

assign each project to one of nine categories with a large language model (LLM).22 Details on the

classification procedure are in Appendix B.3.

Finally, I have the full set of project bid-schedule items from 2014-2023. This is the complete list of
19When relevant, I restrict to a balanced panel or report balanced panel results in the appendix.
20The data documents $66 billion spent in 2023 via DOT auctions, while all levels of U.S. government combined spent

approximately twice as much, $127 billion, on road-related infrastructure, according to the OECD survey “Investment
Spending in Transport Infrastructure".

21I assume each firm name uniquely identifies a firm. This assumption appears reasonable based on the validation
exercise. The main challenge arises from cross-state formatting differences.

22Implemented via OpenAI’s API; see https://platform.openai.com/.
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input items, units, and quantities for every project. The items are highly specific; an example item

might be “Galvanized reinforcement steel", or “Hot-mix asphalt base course 10in". Item identifiers

and descriptions are unique to each state, allowing me high specificity in controlling for project

characteristics within states over this decade of data. This project bid-schedule data is the main

dataset used for the model estimation.

Additional data I obtain data on firm locations and start years from Dun and Bradstreet, a commercial

provider of firm-level data and analytics. I obtain all firm from their database with SIC code 16,

“Heavy Construction, Except Building Construction Contractors", and all firms with SIC code 15,

“Building Construction - General Contractors and Operative Builders." Appendix B.2 provides

details on the matching procedure. Finally, I obtain data from the Census on demographic variables

across counties, and from the Bureau of Labor Statistics on price indices.

Summary statistics Table 1 reports summary statistics. Panel A summarizes the data at the auction

level, starting with the project shares by the five most common engineering types. Asphalt jobs

are the most common, followed by bridges and grading work. The most notable statistic is that the

median number of bidders is three, a key fact discussed in Section 3. The variation is large, with

a standard deviation of 2. Panel B summarizes the data at the state–year level, showing that the

average state has nearly 300 auctions per year, though the distribution is skewed: on average 79

auctions account for 80 percent of annual spending. The average state–year has 145 distinct bidders

and 84 distinct winners, a relatively large number given the small average number of bidders per

auction.

Panel C reports bidder-level statistics. On average, firms appear for eight years, bid in 51 auctions,

and win 14. Firms typically bid in three different types of auctions — for the most part they operate

generally instead of being specialized. Thirty-seven percent never win at all, suggesting many test

the market but do not stay. However, these firms account for only 2% of all bids, so they are not

consequential in the market at large. I identify 12% of firms in the data as operating in multiple

states. Because identifiers are at the state level, I conduct this match using both name matching and

a large language model; detail and validation results are in Appendix B.2.23 Among firms that ever

win, the interstate share is 18%. This share is low given that, aside from the Rocky Mountains and a
23My matching approach minimizes false positives and validation implies about a 10% under-count, so a corrected

estimate is that 13% of firms are multi-state.
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Variable Statistic Value
Panel A. Auction statistics
Engineering Type: Asphalt Percent 41.7%
Engineering Type: Bridge Percent 18.9%
Engineering Type: Grading/Excavation Percent 14%
Engineering Type: Uncategorized Percent 13.6%
Engineering Type: Concrete Misc. Percent 2.4%
Tons awarded Mean 13765
Bidders per auction Mean 3.63
Bidders per auction Median 3
Bidders per auction Std. dev 2.14

Panel B. State statistics
Auctions per year Mean 294
Auctions per 80% yearly spend Mean 79
Bidders per year Mean 145
Winners per year Mean 84

Panel C. Firm statistics
Auctions Mean 51.37
Wins Mean 14.12
Years active Mean 7.54
No. types Mean 3.01
Never win Percent 36.9%
Multi-state Percent 12.4%

Note: Panel A presents summary statistics at the auction level.
The five types shown are the five most common auction types.
Tons is the total sum of all bid-schedule items that are measured
in tons. Panel B averages across each state year. Panel C presents
statistics at the firm level. The last two rows gives the percent of
firms satisfying the variable.

Table 1: Summary Statistics

few other ranges, there is no natural reason a state border to segment the market.

3 Empirical Facts

Infrastructure Prices Keep Rising I begin by examining levels and trends in the key variables

of interest, price and competition. Starting with price, I find that over the past two decades, the

winning bid for highway infrastructure roughly doubled, as shown in Figure 1. The red line shows

the national median winning bid for all roadwork projects, which rose from $1 million in 2002 to

$2.1 million in 2024, an increase of 107%.24 The plot accounts for inflation by dividing by CPI, so

this doubling is in real dollars. This pattern extends the increase documented by Brooks and Liscow

(2023) for the late twentieth century, and shows continued price growth in the 21st century.
24I define roadwork as projects classified as asphalt or concrete pavement, or with descriptions containing specified

roadwork keywords (see appendix B.1).
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It is possible the rise in winning bids could be caused by a compositional shift towards a different

class of projects. This would constitute a rise in expense, but not a true price increase. To examine

this, I plot the trend for three additional subsamples of the data, corresponding to more groupings of

more homogeneous projects. The orange line shows the trend for asphalt projects, the subset of

roadwork in which asphalt work is the primary expense.25 The yellow line shows the trend for bridge

projects, which is a separate category. Both groups have similar increases for winning bids, growing

by 134% and 96%, respectively, over the full period. The final line (light blue) turns to project size,

plotting the median winning bid for projects between the 45th and 55th percentile of native tons, the

best proxy for size available in the data.26 An advantage of tons is that it captures real differences

between projects covering the same length of road with different intensities of reconstruction. A

disadvantage is that it only captures inputs measured explicitly in tons. In Appendix Figure A.3 Panel

(b) I report a robustness check with hand-collected data for six additional states with a converted

tons measure regardless of native units.27 When controlling for native tons, the price increase is

larger, at 150% over the period.
25For example, road widening projects in which excavation and earthwork is the primary expense are excluded.
26Native tons is the total tons of all inputs that are measured in the unit tons.
27The converted tons measure converts all asphalt amounts to tons from their native units. I use standard conversions

between volume, weight, and area for asphalt, described in detail in Appendix B.4. Because I only have bid-schedule
data starting in 2014, I hand-collect additional data covering the full period for six states. While quite noisy, the measure
appears compatible with the price increase.
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Figure 1: Winning Bids Are Rising Over Time
Note: Figure plots the median winning bid of DOT infrastructure projects between 2002 and
2024. All prices control for inflation and are in 2023 dollars. The blue lines show medians for
projects in the 45th to 55th percentile of size, defined as the total tons of input items measured
in tons. The percentiles are defined separately for each state. The dashed vertical line marks the
beginning of the detailed data, indicating the period covered by the structural estimation later in
the paper. Figure A.3 Panel (a) shows analogous trends for a balanced panel of states.

The rise in prices cannot be easily explained. Appendix Figure A.4 Panel (a) shows that the upward

trend in prices is just as steep for projects in rural counties and located on flat terrain. Panel (b) shows

that the construction PPI has remained flat over most of the period, and average construction wages

over the period have not grown at all. Strikingly, the national unionization rate in the construction

industry fell by 38% over the period, from 16.7% to 10.3%. Meanwhile, the price of crude oil rose

on net since 2002, but fell substantially in 2011, completely at odds with the pattern of winning

bids. Crude oil is both the main feedstock of asphalt and the main determinant of fuel and energy

prices. Asphalt prices moved with crude oil through about 2010 — nearly doubling and then easing

— consistent with the discussion of cost drivers in Mehrotra et al. (2024) and suggesting that asphalt

likely contributed early on. Yet a back-of-the-envelope shows only about a 10% impact on total

project prices, compared with the 53% increase I observe.28 It cannot explain the laer period, a fact
28Calculation uses asphalt at a conservative 30% of pavement materials, materials at about 40% of project cost

(Strassner and Moyer 2002, Table 4), and the 80% rise in asphalt prices.
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corroborated by the PPI for highway and roads input goods, a new BLS series since 2015, which is

very flat, except for a slight post-Covid rise.

Overall the evidence points to substantial real price increases not explained by shifts in project type,

location, size, or, for the most part, input costs. I cannot rule out all production-cost drivers or

changes in project complexity. Accordingly, in Section 4 I control for detailed project inputs using

machine learning and then reverse engineer total production costs from observed bidding behavior,

yielding an estimate that captures all cost increases borne by firms.

Price Increases across States are Correlated with Competition Measures I next turn to differences

across states. Geography, precedent, and DOT institutional silos produce substantial variation in

engineering design across states, confounding simple price comparisons. Unfortunately, engineer

terminology in bid-schedules does not overlap across states, preventing the use of these covariates

to control for design differences. Appendix Table A.3 illustrates the problem with California and

Kentucky. Raw winning bids in California dwarf those in Kentucky by an average of $9.2 million.

However, the gap narrows by 82% to $1.7 million after controlling for just a few coarse project

design covariates.29 To reduce the impact of omitted state-level design variables, I rely on the

panel aspect of the data and focus on within-state differences. Later, I show that under plausible

assumptions, markup level estimates are immune to this bias and can be compared across states.

Table 3 reports correlations between within-state changes in prices and changes in covariates of

interest from two-way-fixed-effects regressions.30 Notably, most of the input price, wage, and

demographic covariates have no statistically significant correlation. This includes the coefficient

on the state prevailing wage, a policy that has generated discourse (Kessler and Katz, 1999).31

This is perhaps because the Davis–Bacon Act, the federal prevailing wage law applying to all

projects receiving federal funds, is the binding constraint. Regardless, while these production side

variables show little correlation, there is a strong positive correlation between within-state increases

in price and changes in competition-related measures. States that experienced relatively larger price

increases also saw relatively larger declines in the number of active firms, the Herfindahl-Hirschman
29Under the logic clarified by Oster (2019), instability of coefficients with respect to observables should raise concerns

about selection on unobservables.
30Appendix Table A.4 reports estimates from parallel regressions that omit state fixed effects. Because project designs

differ across states, the resulting correlations are difficult to interpret.
31The coefficient is identified by six states that repealed their prevailing wage law over the period.
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Index, and the average number of bidders per auction. These results are purely correlational, yet the

magnitudes are non-trivial and motivate further investigation.

Within-state correlation

Covariate Estimated coefficient (SE)

Log avg. petrol product price 0.147 (0.267)
Log construction wage -0.014 (0.021)
Pct unionized 0.006* (0.003)
State prevailing wage law -0.037 (0.062)
Log population 0.102 (0.126)
Log median HH income -0.027 (0.025)
Log construction establishments 0.172 (0.258)
Log firms in market -0.266*** (0.039)
Herfindahl–Hirschman Index (0–1) 0.489*** (0.162)
Log Avg. Bidders -0.199*** (0.072)

State FE yes
Year FE yes
Observations (by row): 927, 927, 927, 815, 530, 927, 927, 927, 927, 927
Adj. 𝑅2 (by row): 0.813, 0.813, 0.814, 0.813, 0.820, 0.813, 0.813, 0.822, 0.815, 0.815

Note: Table reports estimates from a log-linear two way fixed effect regression of prices (log
winning bids) on covariates. The first covariate is the log numer of firms that win any auction in
a given year, the second is the Herfindahl-Hirschman Index, and the final is the log number of
average bidders per auction. Results are reported the unbalanced and balanced panel.

Table 3: Descriptive Evidence: Price and Competition Indicators

Auctions have Few Bidders I provide new summary statistics on competition in U.S. transportation

infrastructure nationally. Figure 2 plots the share of auctions with one, two, or three bidders over

time. Overall, most auctions attract few participants. Across the sample, the median is three bidders,

and nearly one third of auctions have only one or two bidders. These numbers are more extreme

than previous findings in the auction literature; seemingly, the states historically most willing to

release data were those with above average competition, perhaps due to general higher administrative

capacity.

The time trend in the number of bidders can be broken into two parts. The 2002 to 2009 period reflects

the tight link between private sector and public sector construction. As the private construction sector

surged with the housing boom, auction participation dropped, driving up the share of low-bidder

auctions. With the onset of the Great Recession, this pattern flipped, as stimulus (and lower

opportunity costs) boosted public sector construction.

In contrast, the post-2010 period is marked by a secular decline in bidder participation. In 2010,

auctions with one to three bidders made up 47% of the total. By 2024, this share had risen to 63%.
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Appendix Figure A.5 restricts to roadwork projects and shows a similar increase from a higher

baseline: one to three bidder auctions accounted for 59% of all roadwork projects in 2010, and 72%

by 2024. The share of roadwork auctions with just a single bidder increased by 40% over the period,

from 13% to 18% of all roadwork projects. It is the consequences of this post-recession trend that

the model section of this paper tries to understand.

Figure 2: Macro-economic Effects and Decreasing Bidder Trend
Note: Figure plots the share of auctions by number of bidders from 2000 to 2024. The first
shaded gray region marks the start of the housing boom and the end of the Great Recession, and
the second marks the COVID-19 pandemic. The dashed vertical line marks the beginning of
the detailed data, indicating the period covered by the structural estimation later in the paper.
Appendix Figure A.5 Panels (a) and (b) plot analogous graphs for the balanced state panel and
the roadwork only panel respectively.

One simple mechanism behind the post 2010 fall in bidders could be that infrastructure demand

grew faster than firms could enter the market, resulting in fewer bidders per auction. This seems

especially possible in the later period given the additional funds allocated to highway infrastructure

by the IIJA in 2021. Indeed, entry into the market over the entire period is very limited. As shown

in Appendix Table A.2, of all bids in a given year, only 2.5% are placed by a firm new to the market

that year. This number increases slightly when also treating firms that cross state lines into new

local markets as entrants, but only to 3.3%.32 However, the story of limited entry and rising demand
32The rarity of entry is also inconsistent with a model of low entry barriers and high turnover, as one might expect in

contestible market theory (Baumol et al., 1982).
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cannot be right, because demand actually did not rise over the period. Appendix Figure A.6a shows

that the number of projects auctioned by the government has been flat since 2010. Appendix Figure

A.6b corroborates this by showing the amount of infrastructure (as measured in total tons) also did

not increase over the period, although total spending did.33 The cyclical trend in annual projects

does correlate with the cyclical patterns in bidder participation, but there is no relation in the long

run between demand and bidder decline.

First Bid Second Bid Gaps Decline with Bidders One simple indicator of the effect of the number

of bidders on price is the gap between the winning bid and the second-lowest bid. This “bid gap"

equals the loss to the government if the winning bidder disappeared and all else remained equal.

Figure 3 plots the national median bid gap by number of bidders for all roadwork auctions over the

sample period. Bid gaps are residualized by state and re-centered at the national average to account

for omitted state-level factors that may shift both bidder counts and gap levels.

As the plot shows, the bid gap declines convexly as the number of bidders rises. Since by construction

there is no such measure in one-bidder auctions, the largest estimated bid gap is for two-bidder

auctions, where the median gap is nearly $300,000 (2023 dollars). The gap falls steeply with

additional entrants, leveling off around six bidders at roughly $175,000. Appendix Figure A.7 shows

the same pattern appears across different sub-samples, including asphalt projects and projects in the

45th–55th percentile of size.
33The lack of an increase in projects built under the Biden administration may be surprising, but infrastructure output

during this period remains debated. For discussion, see Zachary Liscow, “Highway investment probably didn’t go up
under Biden,” Briefing Book, March 3, 2025.
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Figure 3: First Price - Second Price Bid Gap by Number of Bidders
Note: Figure plots the national median difference between the second-lowest and lowest bids by
number of bidders in the auction for all roadwork auctions. To account for state omitted variables
that affect both bid gaps and number of bidders, gaps are demeaned by state with the national
mean added back. When taking means, 1% of the sample is trimmed due to large outliers.
Appendix Figure A.7 plots analogous bid gaps for three different subcategories of auctions:
bridges, asphalt only roadwork, and roadwork projects within the 45th to 55th percentile of
native tons, which proxies for a constant size.

Unfortunately, the bid gap is not a measure of the price effect of a new bidder. For it to be so, one

would have to make a strong assumption on the composition effect — the new bidder is the low

bidder — and the strategy effect — the incumbent bidders do not adjust their bids. While the failure

of these assumptions produces oppositely signed biases for the effect of a new bidder, both failures

generate a downward bias for the change in the effect of a new bidder.34 In other words, the decline

in the bid gap as the number of bidders increases in Figure 3 is a conservative estimate the decline

in the effect as the baseline number of bidders increases.

Direct Evidence that More Bidders Reduces Prices Exogenous shifts in the number of bidders are

rare, which means that most of the evidence on how participation affects prices comes from theory

or simulated counterfactuals. The quasi-experimental results that do exist have mixed results.35 A

small impact is consistent with theory if in practice the variance in costs across firms is small. In

this case, any bid above cost is quickly undercut, keeping markups small even with few competitors.
34If the first assumption fails, the bid gap overstates the savings to the government, and this failure is more likely

when the baseline number of bidders is large. If the second fails, the bid gap understates the savings, and this failure is
more likely when the baseline number of bidders is small.

35For example, an Italian publicity reform was found to increase bidders by 9.3% and the winning rebate by 7%
(Coviello and Mariniello, 2014). However, new e-procurement policies in India and Indonesia were found to increase
participation meaningfully (increase of 0.4 bidders from a baseline of 2.9), though not statistically significantly, despite
having a precise null (at least greater than -.02%) effect on prices (Lewis-Faupel et al., 2016).
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Of course, theoretical predictions would also fail if firms systematically fail to bid strategically.

I directly estimate the average causal effect of the number of bidders on price, capturing the total sum

of the composition and strategic effects. To identify the effect, I use plausibly exogenous variation

in the number of bidders. I would like to estimate

log(price 𝑗𝑐𝑡) = 𝛼 + 𝛽𝑁 𝑗𝑐𝑡 + 𝜖 𝑗𝑐𝑡 , (1)

where log(price 𝑗𝑐𝑡) denotes the winning bid in auction 𝑗 in year 𝑡 and county 𝑐, and 𝑁 𝑗𝑐𝑡 is the

number of bidders in the auction. The parameter of interest is 𝛽, the average causal response to a

unit increase in the number of bidders.

The primary challenge in estimating 𝛽 is that 𝑁 𝑗𝑐𝑡 is endogenous, since firms choose to enter auctions

based on project characteristics that also affect price. This generates a positive correlation between

the number of bidders and the error term, Cov(𝑁 𝑗𝑐𝑡 , 𝜖 𝑗𝑐𝑡) > 0. The resulting identification problem

is formidable, since it requires finding an exogenous shifter of the number of bidders that does not

also affect prices. A secondary challenge is that bidders do not observe the number of competitors

ex ante. Consequently, I am interested in variation in 𝑁 𝑗𝑐𝑡 that also impacts bidders’ expectations,

as would be consistent with a shift in the equilibrium distribution of 𝑁 𝑗𝑐𝑡 , the change of interest.

Unpredictable shifts, on the other hand, would likely underestimate the total effect.

To address these concerns, I first summarize at the county level, taking the average of log price,

number of bidders, and time-varying covariates for each county-year.36 County-level changes are

more likely to be salient to bidders than auction level variation. I start by estimating the following

within-county linear regression:

log(price𝑐𝑡) = 𝛽𝑁𝑐𝑡 + 𝜆𝑥𝑐𝑡 + 𝛾𝜏𝑡 + 𝜇𝑐 + 𝜖𝑐𝑡 , (2)

where 𝜏 is a time trend and 𝜇𝑐 is a county fixed effect. The variable 𝑥𝑐𝑡 is average native tons of

inputs, my main proxy for size, described in Section 2.2. In order to identify the parameters of
36I balance the panel across counties, which drops 36% of observations.
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interest, this model needs to satisfy strict exogeneity.37 While this specification may reduce the

bias in equation 1, one is likely concerned that strict exogeneity is violated due to time-varying

unobservables that are correlated with both county average price and number of bidders.

For this reason, my preferred approach uses an instrumental-variable (IV), constructed using distance

between firms and auctions. Because transportation costs of equipment, materials, and labor are

substantial, distance is a strong predictor of firm auction entry. Appendix Figure A.9 reports

estimates from a linear probability model of auction entry on distance deciles. At distances under 3

miles, firms enter about 14% of auctions, whereas at 100 miles, the probability falls below 2%. I

construct the instrument using firms for whom the given state is a secondary market to ensure their

establishment location is exogenous to the affected auctions. Appendix Figure A.8 visualizes the

variation used in the instrument, showing a single firm’s expansion over time. The expansion across

the border is notably lumpy in time and the auctions entered are driven by distance, suggesting this

instrument has a strong first stage.

Specifically, to construct the instrument, I identify each firm 𝑖’s home state ℎ𝑖 as the first state they

enter. For state 𝑠 and year 𝑡, I define an out-of-state bidder as a firm with at least one bid in 𝑠 during

𝑡 whose home state is not 𝑠, i.e. if |bid𝑖𝑠𝑡 | > 0, ℎ𝑖 ≠ 𝑠. I calculate the distance between 𝑖’s location

and the county of every auction in 𝑠 during 𝑡. Details on the construction of the distance measure

are in Appendix Section B.5. I construct a county level indicator for whether there is an out-of-state

bidder within 100 miles:

𝑁𝑐𝑡 = 𝛾1(min
𝑖
(𝑑𝑖𝑐𝑡) < 100 miles) + 𝑥𝑐𝑡 + 𝜀𝑐𝑡 . (3)

I choose 100 miles based on the entry and distance regression reported in Figure A.9, but report

results with varying this threshold in Appendix Table A.5. For the instrument to be valid, I require

(i) distance strongly predicts auction entry (relevance); (ii) firm locations are as-good-as random
37Strict exogeneity requires that, conditional on the county fixed effect, the entire path of the error is independent

of the entire path of the regressors: (𝜖𝑐1, . . . , 𝜖𝑐𝑇 ) ⫫ (𝑍𝑐1, . . . , 𝑍𝑐𝑇 ) | 𝜇𝑐, with 𝑍𝑐𝑡 = (𝑁𝑐𝑡 , 𝑥𝑐𝑡 , 𝜏𝑡 ). I also present a
similar exercise using a first-difference specification in the Appendix Table A.5. Under first-differences, unbiased
estimation of 𝛽 requires that Δ𝜖𝑐,𝑡 is uncorrelated with the contemporaneous change in the independent regressors.

22



with respect to cross-border project proximity (random assignment); (iii) out-of-state firms affect

prices only through the number of bidders (exclusion), and (iv) the instrument never reduces the

number of bidders per auction (monotonicity).38 I argue the second assumption is reasonable based

on the observation that a firm’s home state is typically its primary market (88% operate exclusively

in one state). For firms that enter markets outside their home state, the average time until entry is 6

years. The geography of out-of-state auction opportunities is therefore less likely to impact firm

location choices than in-state auction opportunities. Should this assumption still fail, the selection

bias would shrink the magnitude of the estimated coefficient.39 A potential threat to assumption (iii)

would be if out-of-state bidders have systematically lower bids than state incumbents. Appendix

Figure A.10 shows that out-of-state bidders actually have a slightly lower probability of winning

an auction, suggesting higher bids, but the confidence intervals overlap between out-of-state and

control bidders overlap.

Table 4 reports the estimated coefficients. Column (1) shows the ordinary least squares result

yields a positive correlation between the number of bidders and price, consistent with selection bias.

Column (2) shows that county fixed effects alone reduce the selection bias and flip the sign of the

point estimate. Column (3) reports the first stage for the IV regression, showing that proximity to

out-of-state bidding firms significantly increases the number of bidders in an auction. Switching

from no out-of-state bidders within 100 miles to at least one raises the number of bidders on average

by .15.
38I follow the terminology of Imbens (2014).
39An alternative reason for estimates to be biased toward zero is if panel transformations diminish the fixed-effect

signal relative to measurement error, as emphasized by Griliches and Mairesse (1995).
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Dependent variable:

Log Bid Log Bid No. bidders Log Bid Log Bid Log Bid

(Within County) (First Stage) (IV) (IV) (IV)
No. bidders 0.071∗∗∗ −0.014∗∗∗ −0.125∗∗ −0.097∗ −0.152

(0.004) (0.003) (0.056) (0.050) (0.098)

dist. firm < 100mi 0.153∗∗∗
(0.018)

Log tons 0.096∗∗∗ 0.149∗∗∗ −0.017∗∗∗ 0.135∗∗∗ 0.126∗∗∗ 0.135∗∗∗
(0.002) (0.002) (0.003) (0.002) (0.003) (0.002)

State FE yes yes yes yes
Time Trend yes yes yes yes
County FE yes
Year FE yes
Lag log bid yes
First stage partial F 76.26 102.79 27.48
Observations 22,050 22,050 22,050 22,050 13,461 22,050
Adjusted R2 0.125 0.562 0.303 0.471 0.458 0.459

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: Table reports coefficient estimates from equation 1 using the strategies outlined in
equations 2 and 3. Column (3) includes a lagged outcome to account for dynamic bias in fixed
effect panel models, which Klosin (2024) shows is greater than Nickell bias. Robustness checks
to the distance threshold in the instrument are in Appendix Table A.5.

Table 4: Estimates of the Impact of Number of Bidders on Prices

Columns (4) - (6) present results from the instrument specification. All three specifications produce

estimates of a similar and economically meaningful magnitude. Column (4) directly follows the

specification in equation 3, while column (5) restricts the sample to counties within 50 miles of a

state border and, reassuringly, estimates a similar, though slightly smaller effect, suggesting that the

average causal effect of one more bidder is a roughly 10% decrease in price. To be conservative,

this is my preferred estimate. Finally, column (6) replaces the time trend with year fixed effects;

the estimate is not statistically significant, but the point estimate is similar and slightly larger in

magnitude. Appendix Table A.5, Columns (2) to (5), vary the distance thresholds. While the

smallest cutoff reduces statistical significance, overall the estimates remain consistent with an effect

of approximately 10%.

These results say that, for the set of U.S. auctions whose number of bidders are affected by out-of-state

entrants, on average one additional bidder reduced the government’s payment by 10%. This leaves

at least three questions open: (i) how do effects vary, in particular with the baseline number of

bidders; (ii) can a decline competition explain the path of rising costs over time; and (iii) what are
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the prospective savings if we were able to increase bidder participation in the future. To address

these, I develop a model below.

4 Auction Model

I present a model of bidding in procurement auctions to decompose bids into production costs and

markups. The model builds on an independent private values auction model, allows the government

to reject bids through a secret reserve price, and addresses bidders’ uncertainty about competitors

with a probability distribution over the number of bidders. Given this setup, the structure imposed by

the auction format determines firms’ optimal actions, identifying the production cost with minimal

functional-form assumptions, as shown in Guerre et al., 2000. The richness of my auction data

enables to me preserve this functional form flexibility, using machine learning methods to control

for project heterogeneity. I estimate a separate auction model by state, year, and clusters of similar

auctions, in order to full capture patterns across states and over time.

4.1 Setup

I consider the problem faced by a firm bidding in an auction to win a contract to construct a road.

Each project is heterogeneous and distinguished by project-specific covariates 𝑋 . I omit auction

subscripts to simplify notation; however, covariates, costs, and bids are always auction-specific. A

firm’s optimal bidding strategy trades off raising margins above its cost of constructing the road

with its chances of winning the auction. I make the following assumptions.

(A1) Costs. Bidder 𝑖 has a cost 𝑐𝑖 of completing the project drawn independently from a distribution

with support [𝑐, 𝑐], and c.d.f. 𝐹 (· | 𝑋). I assume 𝐹 (· | 𝑋) is twice continuously differentiable

on [𝑐, 𝑐] and its derivative is strictly positive on [𝑐, 𝑐], and 𝑓 (𝑐 |𝑋) > 0.

(A2) Information I. Bidder 𝑖 does not know the total number of bidders 𝑁 , but the probability

distribution of 𝑁 , 𝑝𝑁 |𝑋 (𝑛) ≡ Pr(𝑁 = 𝑛 | 𝑋) for 𝑛 ∈ {1, . . . , 𝑛̄} is common knowledge.

(A3) Information II. Bidder 𝑖 knows her own cost 𝑐𝑖, does not know her competitors’ costs 𝑐 𝑗≠𝑖, but
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the distribution of all costs 𝐹 (· | 𝑋) is common knowledge.40

(A4) Risk aversion. Bidders are risk neutral and therefore maximize expected profit.

(A5) Government reserve price. The government sets a reserve price 𝑟 for each auction such that

bids exceeding 𝑟 are rejected. The reserve price is secret, meaning it is unknown to bidders.

Reserve 𝑟 is independently drawn from the distribution 𝐻 (·|𝑋), where the distribution is

common knowledge. Conditional on 𝑋 , 𝑟 is drawn independently from 𝑐𝑖.

Assumption (A1) rules out a common-value setting in which firms receive noisy signals about a

shared underlying cost.41 Such an environment may generate the winner’s curse, where the winning

firm systematically underestimates costs.42 As discussed in Section 2.2, empirical estimates of post-

auction renegotiation are modest, with the median ranging from -4% to 3% for four sampled states.

While not a test, if the winner’s curse were prevalent, one might expect substantial renegotiation to

cover losses.

Assumptions (A2) and (A3) together reflect the reality that bidders have limited information on the

competitors they face. While bidders may be informed about the pool of potential competitors, it is

effectively impossible to know how many will ultimately bid. According to a survey by Liu et al.

(2022), most DOTs publicly disclose no information on approved bidders before auctions. For the

remainder that do, these lists are often large and bidders can at most form a prediction. As shown in

Table 1, on average there are 145 unique bidders and 84 unique winners per state per year. Firms do

not partition neatly across sub-markets, as the majority of firms bid on multiple project types and

in multiple locations: the average firm bids in 11 counties; among firms with at least 10 bids, the

average is 25 counties.

Assumption (A4) assumes firms maximize their expected profit. Assumption (A5) models the
40It would be possible to add firm heterogeneity in the cost distribution. It does not matter in this case, as firms do

not know who their competitors are when bidding, so their strategy is only a function of the distribution over all possible
firm types.

41A1 also assumes finite (bounded) support and positive mass at the upper endpoint 𝑐, which provide the initial point
needed to apply the fundamental theorem of ODEs to prove a unique equilibrium bid function, as in Maskin and Riley
(2000). I conjecture that the argument here follows by adapting their Proposition 2.

42Alternatively, it may induce bidders to shade their bids conservatively, as Hendricks et al. (2003) provide evidence of
in offshore oil lease auctions. In that setting, the value of a lease depends on the uncertain size of subsurface oil reserves.
In contrast, roadwork projects have far fewer unknowns, as they are standardized and have detailed specifications
provided in advance.
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government’s rejection of bids judged “unreasonable," i.e., bids that fail screening heuristics. Most

often, these rules incorporate a percentage markup over the DOT’s engineering estimate, along with

other factors (see Liu et al. (2022)). Other papers have differed in their approach to modeling this

feature, often treating the government as an additional bidder, or ignoring it entirely.43 As more than

10% of auctions in my data have a single bidder, it is necessary to directly account for the threat of

rejection.

I model the government as having a secret reserve price 𝑟 with distribution 𝐻 (𝑟) = 𝐹𝑏 (𝑟/1.15),

where 𝐹𝑏 is the distribution of bids. This assumption mimics the common screening threshold of

1.15 times the engineer’s estimate. Appendix Figure A.11 shows that, across the 18 states with

engineer’s estimates in the data, the bid distribution closely matches the distribution of engineers’

estimates. This is not surprising, as past bids are the main information engineers have with which

to form their estimation. While imperfect, this assumption offers a parsimonious representation

of a partly qualitative process and avoids modeling the government as a strategic bidder. It is

conservative: in practice, DOTs are often hesitant to reject bids, so any bias in markup estimates is

likely to be downward.

Each firm 𝑖 in the auction submits a bid 𝑏𝑖 that maximizes its expected profit. Firm 𝑖’s profit

conditional on winning is simply the difference between the bid and their production cost. Firm 𝑖’s

expected profit prior to the outcome of the auction is

E𝜋𝑖 = (𝑏𝑖 − 𝑐𝑖) Pr(𝑏𝑖 : 𝑏𝑖 < min
({
𝑏 𝑗 : 𝑗 ≠ 𝑖

}
, 𝑟
)
| 𝑋). (4)

While in general no closed form solution exists for a standard first-price auction with a secret reserve

price, there exists a Nash equilibrium bidding strategy 𝛽, which is symmetric and increasing in

costs.44 Consequently, the profit condition for bidder 𝑖 can be written as
43For example, Li and Zheng (2009) , Bajari et al. (2014), and Krasnokutskaya and Seim (2011) assume no reservation

price for Texas and California DOT auctions, while Bhattacharya et al. (2014) assume a publicly observed reserve price
set at 1.5 times the engineer’s estimate for Texas auctions.

44I assume this is the unique equilibrium, following Maskin and Riley (2000), which provides the uniqueness proof
for a similar class of auctions.
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E𝜋𝑖 = (𝑏𝑖 − 𝑐𝑖)
∑︁
𝑛

[
Pr(𝑁 = 𝑛 | 𝑋)

(
1 − 𝐹

(
𝛽−1(𝑏𝑖) |𝑋

))𝑛−1
]
· (1 − 𝐻 (𝑏𝑖 |𝑋)),

relying on the symmetric increasing bid strategy to replace the probability firm 𝑖 wins with the

probability all firms other than 𝑖 draw costs lower than 𝑖’s cost, and to write the inverse bid function.

The first order condition with respect to the bid defines the bidding strategy as a differential equation:

𝛽(𝑐𝑖) = 𝑐𝑖︸︷︷︸
variable cost

− Prwin (𝑏𝑖)
Pr′win (𝑏𝑖)

����
𝑏𝑖=𝛽(𝑐𝑖)︸                   ︷︷                   ︸

firm margin

. (5)

The derivation is straightforward and is in Appendix D.1 with the explicit equation. Here and

throughout the paper, I define the margin as the difference between the bid and the marginal cost

and the markup as the margin over cost. The margin decreases as the probability a high number of

firms enter the auction grows. The amount it decreases is mediated by the underlying distribution

of costs. To understand the importance of the cost distribution intuitively, consider a degenerate

distribution where all firms have the same cost. In that case, the equilibrium strategy is to bid one’s

true cost — the margin is 0 if there are at least two bidders. On the other hand, if there is variation

in cost draws, an additional bidder increases the magnitude of Pr′win (𝑏𝑖), pushing down the margin.

4.2 Identification and Parameterization

Semi-parametric Identification

My identification argument closely follows Guerre et al. (2000). Let 𝐹𝑏 (·) denote the distribution

of bids. The unique equilibrium strategy means that 𝐹𝑏 (𝑏𝑖) = 𝐹 (𝛽−1(𝑏𝑖)), using the equality

𝑏𝑖 = 𝛽(𝑐𝑖). The density of bids is therefore 𝑓𝑏 (𝑏𝑖) = 𝑓 (𝛽−1(𝑏𝑖))/𝛽′(𝛽−1(𝑏𝑖)). Substituting these

terms into the bidding equation allows for an expression in terms of observables:
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𝑐𝑖 = 𝑏𝑖 −
𝑆(𝑏𝑖)

(
1 − 𝐻 (𝑏𝑖)

)
𝑆(𝑏𝑖) ℎ(𝑏𝑖) − 𝑆′(𝑏𝑖)

(
1 − 𝐻 (𝑏𝑖)

) , (6)

where 1 − 𝐻 (𝑏𝑖) is the reserve component, 𝑆(𝑏𝑖) ≡
∑
𝑛 Pr(𝑁 = 𝑛) 𝐴(𝑏𝑖) 𝑛−1 is the rival response

term, and 𝐴(𝑏𝑖) ≡ 1 − 𝐹𝑏
(
𝑏𝑖 | 𝑋, 𝑝𝑁 |𝑋

)
is the bid-distribution term. The bid distribution 𝐹𝑏 is

conditional on 𝑝𝑁 |𝑋 (𝑛), the probability mass function for the number of bidders, because strategies

are conditional on 𝑝𝑁 |𝑋 (𝑛). For comparison, the standard model that assumes the number of bidders

𝑁 is known, requires that 𝐹𝑏 is conditional on 𝑁; the analogue here is more complicated since any

shift in 𝑝𝑁 |𝑋 (𝑛) changes the bid strategy.

Since bids are observed and I have assumed 𝐻 is a scaled distribution of bids, observation of

𝑝𝑁 |𝑋 (𝑛) renders the right-hand side of equation 6 observed, identifying costs. In practice, I will

group auctions into two clusters, a “many-competitor" and a “few-competitor" group, using machine

learning and their bid-schedule characteristics. I will estimate 𝑝𝑁 |𝑋 as the empirical distribution of

𝑁 within its cluster.

Semi-parametrization Equation 6 contains high-dimensional conditional densities, the estimation

of which is complicated by the curse of dimensionality. To circumnavigate this issue, I modify the

approach of Haile et al. (2003) to essentially residualize out project-specific covariates from bids.

My approach takes advantage of my rich covariates, machine learning, and the fact that I observe all

bids, not just winning bids. The necessary theoretical assumption for the residualization is that costs

are multiplicatively separable into two components: an auction-specific term common to all bidders,

and a bidder-specific idiosyncratic term. Specifically, I assume

𝑐𝑖𝑎 = exp
(
𝑋′
𝑎𝛾

)
𝜇𝑎𝑐𝑖𝑎; (𝑋𝑎, 𝜇𝑎, 𝑐𝑖𝑎) are mutually independent,

where 𝜇𝑎 is an auction-specific cost shifter. The benefit of this assumption is that it directly implies

𝑏𝑖𝑎 = exp
(
𝑋′
𝑎𝛾

)
𝜇𝑎 𝑏̃𝑖𝑎, (7)
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where 𝑏̃𝑖𝑎 is the bid corresponding to an auction with 𝑐𝑖𝑎 = 𝑐𝑖𝑎, i.e. the cost for bidder 𝑖 in a

hypothetical auction with covariates exp
(
𝑋′
𝑎𝛾

)
𝜇𝑎 = 1. The proof is in Appendix D.2. Note that I

have already assumed the government reserve follows a scaled distribution of the bid; for statement

7 to hold, I require the less restrictive assumption that whatever distribution 𝑟 follows, it scales with

the same exp(𝑋′
𝑎𝛾)𝜇𝑎 factor. This assumption, of course, is still restrictive in that it assumes the

government’s reserve fully adjusts in response to project cost shifters. While this is what most DOTs

attempt to do, they may suffer from incomplete information.

The fact that bids are homogeneous of degree one in costs means that 𝑏̃𝑖𝑡 from regression (7) can

be interpreted as bids for hypothetical homogeneous projects. This individual component of the

bid is thus comparable across auctions and suitable for estimating the distributions and densities

in equation (6). The resulting estimator is semi-parametric: I have assumed that the distribution

of bids belongs to a scale family, where the scale parameter depends on covariates.45 Estimated

margins for the homogenized projects can be scaled back to true bid magnitudes by respectively

multiplying each by exp(𝑋′
𝑎𝛾)𝜇𝑎. A useful implication is that the markup for the homogenized

auction is the same as for the original auction.

4.3 Estimation

Step 1: Bid homogenization I estimate ln 𝑏̃𝑖𝑎 as the residuals from the regression

ln 𝑏𝑖𝑎 = 𝑋′
𝑎𝛽 + 𝛼𝑎 + 𝜖𝑖𝑎, (8)

where 𝑋𝑎 as a vector of covariates at the project level, including (i) fixed effects for the type of

engineering of the project and its AI-derived classification; (ii) ruggedness and rurality measures;

(iii) the logarithm of the total quantities of material, summed separately by measurement unit: tons,

cubic yards, linear feet, square yards and counts of “each"; and (iv) the logarithm of the number of

distinct material items listed in the bid schedule.

I use the equivalence between machine learning and hierarchical bayesian methods to take advantage

of my covariates and to estimate the auction random effect, 𝛼𝑎, which controls for remaining
45Note that the probability distribution of 𝑁 does not need to be homogeneous across projects for estimation.
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unobserved heterogeneity across projects. I estimate regression 8 with maximum likelihood, treating

𝛼𝑎 as a random effect and applying a ridge penalty on the remaining coefficients to guard against

over-fitting.46 Estimation is done separately for each state, allowing the covariate–cost relationship

to be state-specific. I include year fixed effects but do not residualize by them.47 I then normalize

every homogenized bid to a benchmark asphalt resurfacing and repair project—at national median

ruggedness and rurality—using each state’s predicted material quantities for the national median

asphalt project size (Appendix B.4). This procedure enables cross-state comparison despite differing

measurement conventions across state DOTs. For skeptical readers, note that most results do not

rely on level comparisons across states.

Step 2: Cluster auctions To estimate 𝑝𝑁 |𝑋 (𝑛), I cluster auctions into “many-competitor" and

“few-competitor" groups, and estimate 𝑝𝑁 |𝑋 (𝑛) as the empirical distribution within each (cluster,

state, year) tuple. Specifically, I apply a gradient tree boosting algorithm to predict the number of

bidders in each auction using the full set of bid-schedule items.48 Auctions are then divided into these

clusters at the median predicted bidder count. The estimated 𝑃̂ should reflect the probality according

to bidder beliefs; although these beliefs are unobserved, Appendix Table A.14, columns (4) and (6),

shows the predicted bidder count correlates more strongly with homogenized bids than the actual

bidder count, suggesting the prediction aligns closely with bidders’ expectations. Figure A.15 shows

the distribution of the actual number of bidders across the clusters; the distributions are distinct but

overlap in the right tail of the “few-competitor" group and the left tail of the “many-competitor"

group.

Robustness Appendix Table A.13 and Figure A.13 present a summary table and accompanying

violin plots for regression 8 and two alternative specifications for bid homogenization. The first

alternative is a parsimonious baseline that retains only the project classification, engineering type,
46An L2 (ridge) penalty on a coefficient block is equivalent to modeling that blocks as random effects if the Langange

multiplier satisfies 𝜆 =
𝜎2

𝜀

𝜏2 where 𝜎2
𝜖 is the error variance and 𝜏2 is the variance of the prior. See Hastie et al. (2009) for

details.
47Because I will estimate the auction model separately by year, the cost distribution need not be homogenized over

time, so I leave time out of 𝑋𝑎. The coefficients 𝛾 therefore absorb the effect of the project covariates in 𝑋𝑎, removing
only the covariate-driven component of time variation but still allowing costs for a fixed project to shift over time.

48The advantage of using a machine learning algorithm here, relative to bid homogenization, is threefold. First,
since I no longer have multiple observations per auction, I cannot estimate auction-specific fixed effects. Second, the
comparability of covariates across states is no longer necessary. Third, the relationship between auction entry decisions
and inputs is likely more complex than the relationship between construction costs and inputs.
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county ruggedness and rurality, and total tons. The second augments the baseline with exact quantity

measures for the individual bid-schedule items, conditional on items having passing a prespecified

threshold frequency; for example, “wet-weather pavement-marking tape" is included when it is

sufficiently common. Because the resulting set of items is extensive, I estimate these regressors

under a moderate ridge penalty. Full estimation details are provided in the appendix.

The table shows that the preferred specification achieves the lowest cross-validated root-mean-

squared error on every reported metric, and the violin plots confirm that, while the three residual

distributions are broadly similar, the preferred model yields the most concentrated distribution.

Appendix Table A.14 compares predictions of the number of bidders from the gradient tree boosting

algorithm described above to those from a penalized multinomial logit model. Columns (1) and (2)

show that gradient boosting achieves substantially higher 𝑅2 values in explaining both the actual

number of bidders and the resulting bids. Figure A.14 visualizes the bidder count predictions.

5 Estimates

5.1 Estimates of Costs and Markups

Table 5 reports summary statistics of estimates for costs and margins over roadwork auctions in

the continental U.S. from 2014 to 2023. Reported costs and margins are rescaled back from the

homogenized bids to match the actual bid levels, reversing the homogenization procedure in Section

4.3. Although estimation uses all bids, I report results across winning bids only to represent realized

prices. The first panel reports auction-level summaries over all winning bids; the second panel

reports the interquartile range across state means; the final panel groups projects by terciles of

estimated costs and reports results by tercile.

Estimated margins are economically large. The mean margin is approximately $0.7 million against a

mean cost of $2.5 million. Correspondingly, the mean markup over all winning bids is .22, meaning

for the average project the government pays 22% above the production cost.49 There is a wide range
49In the broader markup literature, this estimate is quite similar to the benchmark in De Loecker and Warzynski

(2012) – though this paper uses a vastly different methodology – who report a median markup of .2 for U.S. public
firms, stable over time, though with a large rise in the right tail since 1980.

32



in the estimated markup across projects, with the 25th percentile markup equal to .1 and the 75th

percentile triple that, at .34. The median markup is slightly lower than the mean, at .17, reflecting

a long right tail. To address concerns that extreme tails are due to estimation error, all means are

estimated with a 1% sample trim; Appendix A.6 shows that the mean markup is stable under larger

sample trims.50

Variable Mean Median 25th pctl 75th pctl
Auction-level

Markup 0.22 0.17 0.10 0.34
Cost 2477 1251 401 3210
Margin 693 339 147 795

State-level (means)
Markup 0.19 0.26
Cost 2097 4100
Margin 588 879

By project cost
Small

Markup 0.62 0.28 0.15 0.67
Cost 436 416 259 608
Margin 222 118 64 257

Medium
Markup 0.26 0.17 0.11 0.30
Cost 1606 1537 1158 2028
Margin 405 268 167 474

Large
Markup 0.18 0.13 0.09 0.20
Cost 7013 5129 3608 8431
Margin 1161 784 467 1436

Note: Table reports the mean and interquartile range of winning bids for roadwork projects from
2014–2023. All monetary values are in thousands of 2023 USD. The bottom and top 1% of
observations are trimmed to remove extreme tails. Appendix Table A.6 reports means under
alternative trim percents of 0%, 1%, 3%, and 5% trim; the markup stabilizes after the 1%. For
the third panel, only projects with estimated winning costs greater than $.1 million are used,
dropping the smallest 10% of auctions.

Table 5: Summary Statistics of Estimates

Some state procurement markets appear noticeably more compelling to bidders. Variation in the

markup across states is substantial. The 25th-percentile state has a mean markup of 0.19, whereas

the 75th-percentile state has a mean of 0.26. The second row in this panel shows that costs also

differ markedly across states, nearly doubling from the 25th to 75th percentile state. This variation
50 A small number (less than 3%) of estimated costs are negative. These arise when extremely low bids can only be

rationalized by negative costs, which may reflect genuinely negative costs (e.g. if a firm needs to use sitting materials)
or dynamic incentives to win, violations of the model such as non-risk-neutrality, or failure to control for some project
heterogeneity. This project pushes hardest on the third concern using rich controls, machine learning, and random
effects, though bias may persist.
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reflects a combination of differences in project design and differences in the cost of a given project

holding design fixed. Unfortunately, because detailed project covariates are defined within state,

distinguishing between these two channels is complex. However, as discussed in Section 4.2, under

the assumption of multiplicative project covariates, the markup is scale-invariant and therefore

directly comparable across states, regardless of the baseline cost differences.

High-markup states are concentrated in the Midwest and the South, as shown in the map in Appendix

Figure A.17. Kentucky stands out with a median estimated markup of 0.55, reflecting a remarkably

low average number of bidders per auction (1.6 in the estimation sample). Large markets such as

California and Texas exhibit lower markups. Rhode Island is an outlier, achieving low markups

despite its small market size. However, this likely reflects unusually high cross-border participation,

since the state has the highest share of multistate firms active within its borders (74% over the

period).

The third panel of Table 5 shows that markups decline with project size. The median falls from 0.28

in the smallest tercile to 0.13 in the largest. In auctions, markups adjust with both the distribution of

costs and the number of bidders. In the setting at hand, an additive increase in costs (a location shift

of the cost distribution) that leaves its shape and scale unchanged keeps the margin constant and

lowers the markup. By contrast, if costs increase with a multiplicative scaling of the cost distribution,

the margin increases while the markup is constant. Empirically, the dispersion of both costs and

prices appears to increase as mean increases, which would suggest larger projects see higher margins

and variable profits, and even higher markups if the effect is large enough. At the same time, bidder

counts are not fixed, and in fact increase with project size from 2.69 to 3.18, which in turn pushes

markups down. On the whole, the net effect of these two forces results in declining markups. The

model so far is agnostic about why certain auctions draw a higher numbers of bidders; Section 7

takes up that question.

Figure 4 plots estimated markups against the realized number of bidders, paralleling the bid gap

curve in Figure 3. The median markup drops by about one quarter from one to four bidders. Because

bidders observe only the distribution of bidder counts rather than the realization, the pattern is

generated by between state–year–cluster variation. The figure reports up to five bidders; beyond

this point, most auctions are classified into the high-competitor cluster, mechanically restricting the
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Figure 4: Estimated Markups by Realized Number of Bidders
Note: Figure plots the median estimated markup by actual number of bidders across all winning
bids for roadwork projects from 2014-2023. Markups are computed from estimated costs and
margins; observations with non-positive costs/markups are excluded. Bars reflect unweighted
medians across auctions (not value-weighted).

incremental effects.51

5.2 Decomposing price growth over time

Using the estimates of costs and markups for every auction between 2014 and 2023, I decompose

the price trend over this period into its component parts. Because estimation is split by year (and

state cluster), the time trend of estimated costs and margins is allowed to be fully flexible. I first

show the difference between the actual mean price and the mean of the homogenized projects, which

are residualized by covariates, as discussed in Section 4.3. The resulting gap between the actual

and homogenized price shows the change due to changing project inputs for roadwork, which I

term project complexity. The gap would not capture changes in input prices, but such a change

would appear in the estimated production cost. The mean estimated production cost and the mean

estimated margin together sum to equal the mean homogenized bid each year.

Figure 5 visualizes the results of the time trend decomposition. The two lines show that detailed

project covariates can account for a piece of the price growth. The red dashed line shows the

mean actual bid, which rose 28% over the ten-year period. As in Figure 1, this is controlling for
51The slight uptick at five bidders may reflect coarse clustering; finer clusters trades off increasing the similarity

of projects estimated together with a loss in precision. The upward turn at five bidders could also arise from genuine
variation, e.g. if five-bidder auctions have higher cost variance which generates larger markups.
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inflation.52 The yellow line reports results for homogenized price, which in turn rose 18% over

the period. Consequently, project complexity alone can explain 36% of rising prices. What does

increasing project complexity look like? Appendix Figure A.16 plots trends for inputs with the

highest growth for Nebraska, a state with particularly high price growth over the period. The highest

growth inputs include a combination of new environmental adjustments, technical items such as

membrane waterproofing, and training. Additionally, the average number of inputs per project in

Nebraska increased by 19% from 54 to 64.

Figure 5: Decomposition of Price over Time
Note: Figure decomposes the average winning bid between 2014 and 2023 into changes due to
project characteristics, estimated production costs, and estimated margins. The red dashed line
shows the mean actual bid, while the yellow line shows the mean homogenized bid. Both series
are expressed in real 2023 dollars and exclude the top and bottom 1% of bids. The dark shared
region represents the production cost and the light shaded region the markup.

The majority of the increase in prices paid over the period appears to be genuine price growth, with

64% of the growth persisting after project homogenization. The shaded blue regions in Figure 5

separate this price growth into production cost growth and margin growth. The dark blue area

denotes mean total cost. Over the full period, estimated costs rose minimally – 8% – while estimated
52The red dashed line mirrors the red line in Figure 1, with small differences arising from dropping the top and

bottom 1% of projects by bid amount prior to homogenization and from using the mean here, rather than the median, to
facilitate the decomposition.
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margins rose 44%, explaining two thirds of the real rise in price.

The absence of cost growth is notable because the cost estimated in the model represents all variable

costs of production, which together form the basis of a firm’s bid. In particular, this includes labor

costs, which are often discussed as a potential driver of high U.S. infrastructure expenses.53 It

also includes the prices of physical inputs, and also permitting costs, time delays, and the firm’s

opportunity cost. Over the decade since 2014, no portion of production costs appears to have

dramatically worsened, though prices may well be above the level they could reach if such factors

were addressed. Yet, margins, which at the start account for a substantial share of price, are growing.

6 Counterfactuals

How much would the government save if bidders faced more competition? I estimate the prices the

government would pay if each auction had one additional bidder. Unlike the previous reduced-form

exercise, the model allows me to account for the current distribution of bidders. As Figure 4

demonstrates, the effect of one more bidder depends on the current baseline. Holding bidders’

cost fixed, I estimate counterfactual bidding strategies under the hypothetical guarantee of one

additional bidder in every auction. Specifically, I shift the bidder-count distribution up by one – i.e.,

the probability mass on 𝑁 bidders is reassigned to 𝑁 + 1. The model makes explicit how bidders’

beliefs and strategies adjust, allowing for the decomposition of the total price effect into the bidders’

strategic response and the composition effect generated by the expanded bidder pool.

Estimation Having estimated costs under the observed distribution of bidders, 𝑝𝑁 |𝑋 , I now hold

these costs fixed and derive counterfactual bids under an alternative bidder distribution, 𝑝𝑐 𝑓
𝑁 |𝑋 . The

bidding strategy comes from equation 5, restated fully here:

𝛽 = 𝑐𝑖 +
∑
𝑛 Pr(𝑁 = 𝑛|𝑋)

(
1 − 𝐹 (𝛽−1)

)𝑛−1 (1 − 𝐻 (𝛽))∑
𝑛 Pr(𝑁 = 𝑛|𝑋)

(
1 − 𝐹 (𝛽−1)

)𝑛−2
(
(𝑛 − 1) 𝑓 (𝛽−1)

𝛽′ (1 − 𝐻 (𝛽)) +
(
1 − 𝐹 (𝛽−1)

)
ℎ(𝛽)

)
,

53For example, see Goldwyn et al. (2023).

37



where I have omitted conditioning covariates for legibility. As before, 𝛽 is the bid strategy, 𝑐𝑖 is

bidder 𝑖’s random cost draw, 𝐹 is the distribution of costs, 𝐻 is the distribution of the secret reserve

price, and 𝐹 is the probability distribution of the number of bidders.

The secret government reserve price complicates estimation relative to other empirical auction

settings. If there were no secret reserve price, the equilibrium bid solves a straightforward ordinary

differential equation with solution

𝛽 = E
[
min

{
𝐶 𝑗 : 𝑗 ≠ 𝑖

}
| min

{
𝐶 𝑗 : 𝑗 ≠ 𝑖

}
> 𝑐𝑖

]
=

1
𝐺 (𝑐𝑖)

∫ 𝑐

𝑐𝑖

𝑡𝑔(𝑡)𝑑𝑡,

where 𝐺 (𝑐𝑖) ≡
∑𝑁
𝑛=1 Pr(𝑁 = 𝑛) (1 − 𝐹 (𝑐𝑖))𝑛−1. Under this bid strategy, counterfactuals could be

computed straightforwardly by integrating over the mixture distribution 𝐺 (𝑐𝑖).

With the secret reserve price, the ordinary differential equation cannot be solved analytically.

Therefore, I instead estimate the bid function numerically from an initial boundary condition.

Intuitively, the solver expresses 𝛽′ directly as a function of 𝛽, iteratively tracing out the equilibrium

bid curve from this initial point. The estimating equation and implementation details given in

Appendix D.3.

Results An additional bidder lowers prices first by threatening incumbents’ win probabilities, and

second, by potentially having the lowest cost draw. Figure 6 illustrates these two mechanisms for an

example state. The shift from the estimated strategy curve 𝛽(𝑐) to counterfactual strategy curve

𝛽𝑐 𝑓 (𝑐) reflects more aggressive bidding – the strategic effect. The shift is larger for bidder 𝑖 when

the probability distribution of the second-lowest cost, conditional on 𝑖 winning, changes more with

entry. This varies with both the initial number of bidders and the cost distribution. Holding the

winner’s cost constant at the expected minimum cost draw, the distance between the curves isolates

portion of the price decrease due to the strategic response.

The second channel is the extensive margin. A bigger pool of bidders means that there may be a

new bidder who is simply cheaper. In this exercise, I draw new bidders from the same distribution,

though endogenous entry would likely imply a right-shifted distribution. Still, the graph illustrates

why most of the price drop likely comes from strategy, not the extensive margin. Because 𝛽(𝑐)

flattens in the right tail, much of the gain from a low-cost draw is captured by the firm. This is
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intuitive: firms in the right tail of the cost distribution anticipate little competition. The full effect,

ΔPrice, includes both the strategy effect and the pool effect.

(a) Pool Effect

(b) Total Effect

Figure 6: Decomposition of Effect of Increased Competition
Note: Figure shows estimated bidding strategies under the actual and counterfactual bidder
distributions for Alabama (2023, cluster 1). Points are observed bids plotted against estimated
costs. The gap between the curves reflects the strategic adjustment holding cost fixed. The total
price effect combines this with the shift left in expect cost of a new lowest draw.

I estimate effects for all states using the 2023 cost distribution and baseline bidder counts. Table

7 reports results for the strategic effect alone and the total effect for winning bids. On average,

a guaranteed additional bidder yields just over $350,000 in savings per auction. Over a baseline
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average winning bid of $3.7 million in 2023, the savings represent a 10% fall in prices. This

finding is surprising aligned with the quasi-experimental results, given the two exercises use entirely

disparate identification strategies and sources of variation. Comparing the last two rows of the

table shows that, as in Figure 6, most of price effect in the counterfactuals comes from the strategic

margin, with an estimated $300,000 in savings.

All winning bids
Auction-level State-level (means)

Variable Mean 25th pctl 75th pctl 25th pctl 75th pctl
Baseline

Markup 0.37 0.12 0.44 0.17 0.51
Counterfactual

Strategic effect
Markup 0.19 0.06 0.26 0.07 0.34
Δ winning bid ($1000s) -286 -348 -55 -392 -184

Total effect
Markup 0.33 0.08 0.39 0.18 0.47
Δ winning bid ($1000s) -358 -427 -62 -494 -265

Note: Table reports the mean and interquartile range of all winning bids for roadwork projects
in 2023 under baseline and counterfactual distributions of the number of bidders. Cost figures
are expressed in thousands of 2023 USD. The strategic effect adjusts only incumbent bidders’
strategies, while the total effect incorporates the probability that the additional bidder may win.
When computing means, the lowest and highest 1% of observations by cost are trimmed..

Table 7: Summary of Counterfactual Competition and Prices

The complexity of the interaction between the cost distribution and bidder counts is shown in the

changing markup. The strategy effect alone produces a lower markup than the total effect, although

both are lower than the baseline. This is due to the that firms that draw a particularly low cost know

they have good odds of winning even with a higher markup.

7 Entry Barriers

In the preceding sections, this paper documented large, pervasive markups in highway infrastructure

generated by few-bidder auctions. In this section, I turn from the consequences of low bidder

participation to the causes. Identifying sources of limited competition matters in particular for

policy, since remedies depend on why entry is scarce.

One common explanation for limited entry in the face of large variable profits is large fixed
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costs. There are many such fixed costs that might impact the infrastructure market. For example,

construction machinery is a substantial capital investment. Alternatively, there might be fixed

costs that are more intangible, such as the costs of complying with regulatory and administrative

requirements. At the market level, working with the government requires meeting a number of

pre-qualification criteria, which can include extensive paperwork, such as financial audits, proof of

safety procedures, and proof of bonding capacity, a federally mandated insurance for government

work. Firms in the public sector may pay additional legal fees, or additional wages to legal staff.

Firms also face fixed costs at the auction level, including the administrative cost of preparing bid

proposals, and even the cost of obtaining the necessary information about the project to make a

bid.54

I begin by examining evidence of barriers to entry at three different levels: the construction

industry, the infrastructure market, and individual auctions. First, despite the capital-intensity of the

construction industry, construction capital appears unlikely to be pivotal. I find that infrastructure

market participants are typically established construction firms well before their first government

contract. Based on the subset of Heavy Construction and Building Construction firms with reliable

start-year data, I find a median age of the firm at first bid is 17 years (Appendix Figure A.12 shows

the full distribution). It’s also worth noting that a sizable portion of the industry leases machinery,

for whom equipment costs might manifest as variable costs, depending on lease length.55 Regardless,

it appears that most construction firm fixed costs such as building and machinery investments were

sunk prior to entry into the infrastructure market.

I now turn to auction- and market-level entry barriers.56 As detailed in Bresnahan and Reiss (1991),

fixed costs generate economies of scale, so in a larger market firms can operate under lower unit

variable profits. Consequently, in equilibrium, a larger scale means that the market can support more

firms and results in each firm having a smaller variable return on a unit of production. I apply that

logic at both the market and the auction level. My measures of scale are project size, now measured
54Liscow et al. (2023) report that a one–standard-deviation increase in bid-document length is correlated with 16%

higher costs, while a one–standard-deviation increase in outreach is correlated with an 18% lower cost.
55Machinery rental is the third largest category of intermediate inputs in the "Transportation structures and highways

and streets" industry according to the BEA Input-Output Use table (following fabricated structural product manufacturing
and ready-mix concrete manufacturing).

56By “entry barriers” I mean the classic definition of Stigler (1968): a barrier to entry is a cost of producing (at some
or every rate of output) that must be borne by firms seeking to enter an industry but not by firms already in the industry.
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by estimated cost, and state market size, measured by the number of auctions. I report the effect of

scale on the number of bidders, which is a sufficient statistic for firm variable profit, all else equal.

Table 8 reports results. Column (1) shows that doubling project cost increases bidders per auction

by 0.05.Column (2) shows that doubling the number of auctions within 100 miles increases bidders

per auction by 0.22—about 7% relative to the median of three bidders. Columns (3)–(4) push this

logic further by looking across state lines. Remarkably, doubling the number of nearby auctions

across state borders has no effect on bidders per auction. This implies that market fixed costs scale

with state boundaries. Crossing into another state requires incurring a new entry cost. In short, the

fixed costs at infrastructure market level are triggered anew with each new state, suggesting they are

the result of regulatory entry barriers.
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Dependent variable:
Number of bidders

(Project scale) (Market scale)
(1) (2) (3) (4)

Log ĉost 0.047∗∗∗ 0.051∗∗∗ 0.050∗∗∗ 0.050∗∗∗
(0.007) (0.007) (0.007) (0.007)

Log auctions < 100 mi 0.224∗∗∗
(0.017)

Log in-state auctions < 100 mi 0.239∗∗∗ 0.214∗∗∗
(0.015) (0.017)

Log out-of-state auctions < 100 mi −0.010∗ −0.004
(0.006) (0.006)

Log mi to border 0.005∗∗∗
(0.002)

Rurality −0.415∗∗∗ −0.343∗∗∗ −0.346∗∗∗ −0.353∗∗∗
(0.018) (0.019) (0.018) (0.018)

Ruggedness −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗
(0.0004) (0.0004) (0.0004) (0.0004)

Tons (1000s) −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗
(0.0003) (0.0003) (0.0003) (0.0003)

Type FE yes yes yes yes
Class FE yes yes yes yes
year FE yes yes yes yes
state FE yes yes yes yes
Observations 36,657 36,657 36,657 36,657
Adjusted R2 0.224 0.227 0.230 0.230
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: Table reports estimates from regressions of the number of bidders per auction on measures
of market scale. The first column looks at project scale, measured by project cost, and the last
three columns look at market scale, measured by the number of auctions within 100 miles of
a given auction. The 100 mile threshold is chosen based on the entry-by-distance results in
Appendix Figure A.9.

Table 8: Market Scale and Fixed Costs

7.1 Auction Entry Model

I am interested in understanding sources of barriers to entry. Measuring regulation, let alone less

formal beaurocratic practices, is a complicated task (Trebbi and Zhang, 2022). I take a different

approach in this section and estimate whether market entry or auction entry costs are larger based

on observed firm behavior. To do so, I combine the results from my bidding model with an auction

entry model and, for estimation, exploit the fact that firms enter auctions only when expected total

profits are nonnegative. The model builds off of Berry (1992). Imposing zero profits at the market

entry margin provides a rough answer to whether market entry or auction-level barriers bind more.

43



I start by embeding the estimated actual and counterfactual margins from Section 4.1 in a threshold-

crossing entry framework, following Berry (1992). Firms draw heterogeneous auction entry costs

from a common distribution and decide whether to enter before observing variable production

cost. The assumptions are considerable, but permit identification of fixed costs from the observed

number of entrants and estimates of variable profits. A benefit of auction setting is that I have

already carefully estimated variable profits, avoiding the linear in observables profit specification in

Bresnahan and Reiss (1991).

I assume the following sequence of events. First, firms in the market draw an auction entry

cost. Second, firms make an entry decision based on their fixed cost and expected variable profit,

conditional on covariates. I assume the firm with the lowest entry costs enter first to ensure a unique

equilibrium. Finally, firms draw their production cost and make their bid. At step one, the expected

total auction profit is given by

EΠ𝑖𝑎 =

variable profit︷︸︸︷
𝑉𝑎 −

entry cost︷︸︸︷
𝜙𝑖𝑎 ,

where variable profit is the expected auction margin 𝑉𝑎 = E [(𝑏𝑖𝑎 − 𝑐𝑖𝑎) Pr ( win | 𝑝𝑁 (𝑛))]. As

before, 𝑝𝑁 (𝑛) is the probability mass function of the number of bidders in the auction, 𝑏𝑖𝑎 is firm 𝑖’s

bid and 𝑐𝑖𝑎 is firm 𝑖’s cost. The firm thus conditions on the distribution of its number of rival bidders,

rather than on the exact value. The expectation at this stage is also over the firm’s own cost draw.

I parameterize auction entry costs as

𝜙𝑖𝑎 ≡ 𝜅 + 𝑍𝑖𝑎𝛼 + 𝜌𝜇𝑎𝑜 + 𝜎𝜇𝑖𝑎,

where 𝑍𝑎𝑖 are demeaned firm characteristics, specifically years of experience and number of state

markets. The variables 𝜇𝑎𝑜 and 𝜇𝑖𝑎 indicate a common auction shock and a firm auction shock,

respectively.
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The likelihood of observing 𝑁𝑎 firms in auction 𝑎 is

Pr (𝑁𝑎 = 𝑁) = Pr ( |{𝑖 : EΠ𝑖𝑎 (𝑝𝑁 (𝑛)) ≥ 0}| ≥ 𝑁)︸                                       ︷︷                                       ︸
at least 𝑁 profitable under 𝑝𝑁 (𝑛)

−Pr ( |{𝑖 : EΠ𝑖𝑎 (𝑝𝑁 (𝑛 + 1)) ≥ 0}| ≥ 𝑁 + 1)︸                                                  ︷︷                                                  ︸
at least 𝑁+1 profitable under 𝑝𝑁 (𝑛+1)

.

The first (second) equation counts the number of firms with positive expected profits in an auction

with the covariates of 𝑎 and 𝑁 (𝑁 + 1) bidders in the 𝑝𝑁 (𝑛) (𝑝𝑁 (𝑛 + 1)) equilibrium distribution. In

other words, the likelihood is given by the probability that at least 𝑁𝑎 firms could be profitable in

the observed equilibrium minus the probability that 𝑁𝑎 + 1 would be profitable if firms shifted to an

equilibrium with one bidder per auction. I assume 𝜇𝑎𝑜 and 𝜇𝑖𝑎 are distributed standard normal with

zero covariance. The parameters of interest are 𝜃 = (𝜅, 𝛼, 𝜌, 𝜎). This likelihood can essentially be

estimated similarly to an ordered probit, but with simulated firm shocks, following Berry (1992).

There are two advantages to this entry model. The first is that, unlike class threshold-crossing entry

models, I do not need to estimate variable profits on market observables. Instead, I can simply

plug in my previously estimated margins and counterfactual margins. Second, the parameters are

identified in levels, due to variable profits𝑉𝑎 fixing the scale in dollars. This is in contrast to standard

discrete choice models, which are usually only identified up to scale.

I estimate my main results for each state using a Markov chain Monte Carlo (MCMC) procedure.

For illustration, Table 9 reports full results for Illinois; the procedure scales cleanly to all states. The

results suggest sizable entry costs, with a mean posterior estimate of $72,000 for the first bidder and

up to $446,000 for the fourth bidder. These estimates bundle all fixed costs at the auction-entry

stage, including, for example, engineer hours for plans, legal review of contract terms, bid bonds and

prequalification work, DBE documentation, and site visits. The estimates may also reflect capacity

constraints: for firms near capacity, some fixed entry tasks can become more expensive, for example

if they hire outside estimators or counsel. However, for the lowest-cost bidders actually observed to

enter, capacity is least likely to bind.
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Parameter Estimate 95% CI

Expected cost (1st entrant) -72.6 [-83.4, -62.8]
Expected cost (2nd entrant) -183.7 [-211.6, -161.5]
Expected cost (3rd entrant) -312.8 [-360.7, -272.3]
Expected cost (4th entrant) -446.3 [-515.4, -386.0]
𝛼1(experience) 0.5 [-5.1, 6.1]
𝛼2 (# states) 0.2 [-5.3, 5.5]
𝜌 121.1 [23.0, 226.9]
𝜎 1242.9 [941.8, 1599.2]

Note: Table reports estimates posterior means and 95% credible intervals
from the state-year structural model of bidding for Illinois in 2023.
Parameters include the fixed entry cost (𝜅), cost-shifter coefficients
(𝛼1, 𝛼2), the auction-level common shock (𝜌), and idiosyncratic cost
dispersion (𝜎).

Table 9: Posterior Estimates

I compare auction entry costs to market entry costs by imposing a zero-profit condition at the

state–market level. This assumption is arguably reasonable given the large number of active firms; as

shown in Table 1, the average state–year includes 84 unique winning firms. Consequently, an entry

model in which firms draw heterogeneous entry costs would yield tight bounds on the difference

between fixed costs and profits.57 I therefore conduct a back-of-the-envelope calculation. I take the

average per-auction fixed cost for the first three bidders, weighting by the mean number of bidders. I

multiply by the average number of auctions a firm enters per year to obtain annual auction-entry

costs. This implies that auction-entry costs account for about 25% of total fixed costs, leaving

about 75% attributable to market-entry costs. The calculation builds on a restrictive model, as I

have assumed a Normal distribution for entry costs and further, no selection on variable production

costs. However, it cleanly separates auction- from market-entry costs. Despite greater attention

to auction-entry frictions in the empirical auctions literature, the evidence here points to larger

market-entry costs and suggests they are the more important margin.
57The market entry condition is 𝑉 (𝑦𝑚 + 1) < 𝐹𝑚 ≤ 𝑉 (𝑦𝑚), where 𝑦𝑚 denotes the observed number of active firms in

market 𝑚, 𝑉 (𝑦𝑚) is the variable profit per firm at that number of firms, and 𝐹𝑚 is the fixed cost of market entry. If
𝜕𝑉 (𝑦𝑚 )
𝜕𝑦𝑚

< 0 and 𝜕2𝑣 (𝑦𝑚 )
𝜕𝑦2

𝑚
> 0, then as 𝑦𝑚 increases the bounds tighten, and for sufficiently large 𝑦𝑚 we have 𝑣(𝑦𝑚) ≈ 𝐹𝑚.
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8 Conclusion

U.S. transportation demand is growing while the physical system is aging, making it increasingly

important to understand how to reduce the costs of reconstruction and upgrades. The lessons learned

may also be relevant for other types of public infrastructure, such as the electricity grid, which is

lagging far behind goals. This paper focuses on one long-hypothesized but understudied channel:

competition in the market for infrastructure construction. In particular, I examine the role auction

competition has played in raising prices above firms’ costs of production, focusing on the direct

impact of the number of auction participants on bids. Yet market structure may further affect prices

in the long run by shaping incentives for innovation — my results may be an underestimate of the

long-run consequences of limited competition.

This paper documents that weak competition is a defining feature of U.S. infrastructure procurement.

Across the country, auctions routinely attract only a handful of bidders, and estimated markups are

large and have been rising since 2014. These markups account for more of the price growth over the

last decade than rising production costs do. I show that securing one more bidder per auction would

yield substantial returns to the government, a result that I establish with both a quasi-experimental

design and a structural model with separate identification strategies. Yet, entry remains scarce. Entry

patterns are consistent with the existence of sizable fixed costs generated by regulatory burdens

rather than physical investments. These entry costs deter participation in both individual auctions

and in the market itself; they appear largest at the state-market level. While reducing regulation

and bureaucracy would reduce prices, in some cases doing so may be difficult or undesirable, as

regulations have benefits. In such a case, increasing the scale of either auctions or market size

would grow variable profits relative to fixed entry costs and reduce markups. These results motivate

further research on barriers to entry and on other policy approaches, from informational outreach to

interstate coordination, to improve procurement outcomes.
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A Supplemental Figures and Tables

Figure A.1: Mean spending per kilometer over complexity ( mean percent of project tunneled)
Note: Figure plots the mean spending per kilometer over mean percent of project tunneled for 59 countries. Country
averages are taken over projects, so that each project is weighted equally. When weighting each project by length, the
U.S. falls to 9th most costly. Data is from the Marron Institute at NYU.

State Mean Median Mean % Median % Source

Massachusetts -26, 990 15, 653 8.46% 1.67% Bolotnyy and Vasserman, 1998-2015
California 457, 746 58, 168 4.32% 3.25% CALTRANS, 2009–2021
Colorado 169, 165 37, 482 3.7% 2.1% CDOT, 1999–2023
New York City -13, 052 -77, 648 -2.14% -3.87% NYCDOT, 2009–2021

Note: Table shows the cost overrun (final price minus winning bid) for four states. Data for Massachusetts comes
directly from Table 1 in Bolotnyy and Vasserman, 2023 and covers only bridges. The other data comes from the
relevant DOTs. The sample sizes are 1651, 2256, and 1265, for California, Colorado, and New York, respectively.
For the latter three states, estimates control for inflation and are in 2023 dollars .

Table A.1: Cost Overruns for Four States
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Figure A.2: Shares of Infrastructure Firms and All Firms by 4-Digit SIC Code (SIC 15–16)
Note: Figure plots the distribution of firms across four-digit SIC codes. “Firms in auction data” are those matched to
the DOT auction sample by name and state, while “All firms” are Dun & Bradstreet firms in the broader SIC 15–16
construction categories. Each unique firm name is counted once. A small number of firms have multiple SIC codes;
shares therefore computed by weighting each firm’s contribution equally across its distinct SIC codes.
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(a) Balanced Panel

(b) Trend with Converted Tons

Figure A.3: Price of Infrastructure Over Time Robustness
Note: Panels plot the median winning bid of DOT infrastructure projects over time, as in Figure
1. All prices control for inflation and are in 2023 dollars. Panel (a) replicates Figure 1 but
uses a balanced panel of states, which includes 41 states. In Panel (b), the dark dashed blue
shows the same exercise for the alternative measure of size, converted tons, for the six states that
have bid-schedule data since 2000. Construction of the converted tons measure is described
in Appendix Section B.4. The sold dark blue line shows the jackknife bias-corrected linear
trend estimated on data from 2000 to 2024 for the dark-blue series, based on leave-one-state-out
resampling. Leave-one-out slopes have large variation: $200, $18,000 $19,000 $21,000 $23,000
and $ 64,000 per year, and with only six states the 95% jackknife confidence interval includes
zero.
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(a) Price and Location

(b) Price and Input Prices

Figure A.4: Price of Infrastructure Over Time
Note: Figures plot the median winning bid for roadwork auctions over time, as in Figure 1. Figure (a) overlays the
roadwork median with median prices for projects located only in rural counties and only in flat-terrain counties. Figure
(b) overlays the roadwork median with three input-cost indices: (i) the Construction Producer Price Index (PPI), (ii) the
Employment Cost Index (ECI) for construction labor, (iii) the national average crude oil price, the main feedstock for
asphalt, and (iv) the PPI for Net Inputs to Highways and Streets, Goods. This index is only available since 2015. All
four indices are also divided by the CPI for comparability.
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(a) Number of Bidders Over Time, Balanced State Sample

(b) Number of Bidders of Time, Roadwork Auctions Only

Figure A.5: Macro-economic Effects and Decreasing Bidder Trend: Robustness
Note: Figures plot the share of auctions by number of bidders over time, as in Figure 2. The dashed vertical line marks
the beginning of the detailed dataset used later in the paper, indicating the period covered by the structural estimation.
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Metric State Market Entrant Procurement Market Entrant

Share of bids 3.3% 2.4%
Share of wins 3.0% 2.4%
Share of value 4.9% 3.8%

Note: Table reports the share of bids, wins, and total contract value captured by firms in the year
they enter the market. Data begin in 2010 to include all states while allowing for at a minimum
three-year lead-in period, to avoid misclassifying firms’ first appearance in the data as true
market entry.

Table A.2: New Entrants Account for Only A Minor Share of Market
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(a) No. of Bidders Over Time with Total No. of Projects

(b) Total Spending and Total Size (Tons) Over Time

Figure A.6: Flat Infrastructure Demand Over Time, Though Rising Spending
Note: Figures (a) plot the share of auctions by number of bidders over time, as in Figure 2, along with the total number
of projects each year. Figure (b) plots the total spending each year, along with the total size of projects, as measured by
total tons of inputs.
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Figure A.7: 2nd - 1st Bid Gap
Note: Figure plots the national median difference between the second lowest and lowest bids by number of bidders in
the auction for all bridge, asphalt roadwork, and roadwork projects within a narrow range of native tons, respectively.
To account for state omitted variables that effect bid gaps and number of bidders, gaps are demeaned by state with the
national mean added back. When taking means, 1% of the sample is trimmed due to large outliers.

Dependent variable:

Winning Bid
Road projects Asphalt only projects + Size + Complexity

California 9,222.78∗∗∗ 6,471.71∗∗∗ 4,547.30∗∗∗ 1,733.85∗∗∗

(536.85) (520.28) (493.51) (514.73)
Log Tons of Asphalt 2,961.60∗∗∗ 2,730.33∗∗∗

(144.37) (233.22)
Asphalt Share of Price −9,231.65∗∗∗

(1,975.57)
Log No. items 2,169.28∗∗∗

(614.53)
Constant 1,463.40∗∗∗ 1,530.78∗∗∗ −23,295.48∗∗∗ −21,997.62∗∗∗

(250.08) (247.51) (1,231.98) (1,879.30)

Observations 3,613 2,744 2,744 2,744
R2 0.08 0.05 0.18 0.24

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: Table shows the difference in average winning bids between California and Kentucky for projects from 2018 to
2024. The outcome is normalized by CPI and is in 2023 dollars.

Table A.3: Difference in Prices: California vs. Kentucky
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Within-state correlation

Covariate Estimated coefficient (SE)

Log avg. petrol product price 0.991*** (0.286)
Log construction wage -0.006 (0.044)
Pct unionized -0.010*** (0.002)
State prevailing wage law 0.107** (0.045)
Log population 0.001 (0.022)
Log median HH income 0.041* (0.024)
Log construction establishments 1.138*** (0.077)
Log firms in market -0.365*** (0.029)
Herfindahl–Hirschman Index (0–1) 1.445*** (0.229)

State FE yes
Year FE yes
Observations (by row): 927, 927, 927, 815, 927, 927, 927, 927, 927
Adj. 𝑅2 (by row): 0.075, 0.063, 0.086, 0.050, 0.063, 0.066, 0.246, 0.206, 0.102

Note: Table reports estimates from a log-linear regression of prices (log winning bids) on covariates, analogous to Table
3 but without state fixed effects. Given project design and engineering vary substantially by state, the correlations are
difficult to interpret.

Table A.4: Price Growth and Covariates

Dependent variable:
Δ Log Bid Log Bid Log Bid

(County First-Differences) (IV: 75 miles) (IV: 125 miles)

No. bidders −0.014∗∗∗ −0.093 −0.215∗∗∗

(0.003) (0.065) (0.068)

Log tons 0.133∗∗∗ 0.136∗∗∗ 0.133∗∗∗

(0.002) (0.002) (0.002)

State FE yes yes
Time Trend yes yes yes
Lag log bid yes
First-stage partial F 55.2 59.1
Observations 19,950 22,050 20,728
Adjusted R2 0.430 0.485 0.407

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: Table reports estimates from modified regressions from those reported in Table 4. Column shows results from a
first differences model: Δ log(price)𝑐,𝑡 = 𝛾Δ𝑁𝑐,𝑡 +Δ𝑥𝑐,𝑡 + 𝜇𝑡 +Δ𝜖𝑐,𝑡 , where Δ𝑦𝑐,𝑡 ≡ 𝑦𝑐,𝑡 − 𝑦𝑐,𝑡−1. Columns 2-3 report
IV results analogous to column (6) in Table 4, but adjusting the threshold distance between the auction and the firm
location.

Table A.5: Estimates of the Impact of Number of Bidders on Prices
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Figure A.8: Example of a firm in expanding to a new state
Note: Figure plots the expansion of one representative multi-state contractor across counties. Shaded areas indicate the
first year the firm bid on a project in each county, with lighter colors corresponding to earlier years.

Means

trim Cost Margin Cost (homogenized) Margin (homogenized) Markup

0% 2603 870 1493 801 1.31
1% 2477 693 1593 669 0.22
3% 2243 604 1638 576 0.22
5% 2079 554 1643 528 0.23

Note: Table reports the means of model estimates of costs, margins, and markup, by the percent of observations that are
trimmed from each tail of the cost distribution. The markup stabilizes after 1% of the sample is trimming.

Table A.6: Means of Model Estimates by Tail Trim Percent
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Figure A.9: Estimates from Regression of Auction Entry on Distance Bins
Note: Figure plots predicted probabilities (point estimates plus intercept) from a linear probability model of a firm
entering an auction, as a function of the distance between the firm’s county and the auction’s county. Firm locations are
taken from a matched subsample of Dun and Bradstreet’s heavy construction firms. The 6% of auctions lacking county
identifiers—for example, those designated as “state-wide”—are dropped. An active firm is defined as one that submitted
a bid in any auction during the year, or in both the preceding and following year. All auction types are included.

B Data Appendix

B.1 Auction data

For each state year, I have a file with all lettings for the year. For each letting, I extract the job id,

the county, the letting date, a description of the job, the total tons of input required for the job, the

engineer’s estimate when available, the bidder name and id, the bidder rank, the bid, and the project

engineering “type," a variable pre-defined by the data provider as the most expensive input category

of item in the project.

States vary by their start year in the sample and their data coverage for the project description and

the engineer estimate. Data is missing when either the state does either does not record it or does

not share it with the data provider. Finally, while the tons variable is always present, states vary in

the share of projects with inputs measured in tons; this reflects both variation in project type and in

chosen units. Table A.7 below gives the min, max, 25th, 50th, and 75th percentile for each of these

variables, as well as the number of auctions per state. Additionally, all states except Rhode Island
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Figure A.10: Estimates from Regression on Indicator for Out-of-State Bidder
Note: Figure plots the mean share of wins for out-of-state entrants and the control group after removing state means;
whiskers show 95% confidence intervals. Estimates come from OLS on the state-demeaned outcome, shifted back by
the control-group mean. The left panel includes all auctions, while the right panel restricts to auctions with exactly three
bidders to control for strategic effects. Home-state observations for entrants are excluded, and the unit of observation is
firm by state.

provide county information.

variable min p25 p50 p75 max

Start Year 1993.00 1996.75 1998.00 2001.00 2007.00

Auctions per year 37.00 99.00 214.00 346.00 952.00

Description 0.61 0.99 1.00 1.00 1.00

Tons > 0 0.44 0.68 0.72 0.77 0.93

Engineer Estimate 0.00 0.00 0.00 0.68 1.00

Table A.7: Data coverage quantiles

For much of the analysis, I restrict to sample of projects identified as “roadwork". I define these

projects as projects of engineering type as asphalt or concrete pavement, or with descriptions

containing specified roadwork keywords: pavement, grinding, paving, resurfacing, milling, route, or

roadwork. I exclude projects of engineering type bridge. This rule is ultimately very similar to using

the “roadway resurfacing and repair" LLM classification based purely on the description, described
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Figure A.11: Bid Density versus Engineer Estimates
Note: Figure plots kernel densities of bids and engineer estimates in log amounts (of thousands of dollars). The left
panel shows bids and the right panel shows engineer estimates. The sample covers the 18 states with engineer estimates
in the data. The top 1 and bottom 1 percent of bids are dropped.

in Section B.3. Roadwork auctions account for 47% of all auctions.

B.2 Firm data

The auction data include firm names and a within-state identifier, but no additional information on

the firms. To illustrate firm industries, Table A.9 reports self-descriptions and listed sub-industries

for a random sample of five firms.

Multi-state firms To identify multi-state firms, I use a three-stage process. First, I clean bidder

names using standard procedures. Second, I build candidate pairs with fuzzy string matching.

Specifically, I apply a constrained Jaro–Winkler (JW) procedure: require overall JW distance 0.20

after cleaning; require at least one shared meaningful word; require the first meaningful word to

share the same initial; if that first word has ≤ 4 characters, require an exact match; if it has > 4

characters, allow a first-token JW ≤ 0.08. This modified rule outperforms a simple JW cutoff and

still shrinks the candidate set substantially. Third, I classify the remaining non-exact pairs with

a large-language model (OpenAI Chat Completions, gpt-5). Each request includes the two firm

names, their states, and a fixed prompt requiring a strict “Yes” or “No” on whether the names are the

same company, with a confidence score. I construct firm identities by taking the transitive closure
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Figure A.12: Firm Age at Infrastructure Market Entry
Note: Figure plots a histogram of firm age at the time of the first infrastructure auction bid, for the 50% of auction
participants matched to Dun Bradstreet records in Heavy or Building Construction (see Appendix B.2). To reduce
measurement error, the sample is restricted to firms that (i) bid in their matched state of location, (ii) have a first bid at
least three years after the auction dataset’s start date for that state, and (iii) have a Dun & Bradstreet “start year” prior to
the first year the database records the firm. Ages are trimmed to the 0–100 year range, with values outside this interval
treated as noise, dropping about 5% of observations. The final sample covers 17% of infrastructure firms. Relative to
unmatched firms, they are slightly more active bidders, participating in 28 auctions on average compared to 18, though
they win slightly less often, at 23% compared to 27%.

over all positive matches, assigning each equivalence class of names a unique identifier. A firm is

classified as multi-state if its identifier appears in more than one state.

Table A.8 reports validation on 100 candidate pairs, split above vs. below the 25th percentile of

the model’s confidence. I determine ground truth by searching each firm online and checking

websites and state records. Reassuringly, I see little evidence that extremely similar cross-state

names belong to different firms. Precision is high – 90% in the higher-confidence set and 93% in the

lower-confidence set – while accuracy is high in the former and lower in the latter. That’s by design:

the false-positive rate stays low (3% and 5%). The benefit is that identified interstate links are

reliable; the cost is a slight under-count. I quantify the under-counting with a back-of-the-envelope

exercise: fuzzy matches contribute 22% of total multi-state firms; the model finds 48% of true

matches in the most-uncertain quartile and 75% in the most-certain three-quarters; overall that’s

68% of true positives, implying the total multi-state count is under-estimated by about 10%.

Firm covariates To obtain firm locations and start years, I use Dun & Bradstreet, a commercial firm
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High-confidence Low-confidence

Metric Top 75% Bottom 25%

Accuracy 92.0% 68.0%
Precision (PPV) 90.0% 93.3%
False positive rate 2.6% 4.8%
N 50 50

Note: Table reports validation for the LLM’s classification of candidate firm pairs as same firm vs. different firms. Pairs
are pre-filtered by a Jaro–Winkler (JW) similarity threshold. Panel A randomly samples 50 pairs from the top 75% by
the model’s confidence; Panel B randomly samples 50 pairs from the bottom 25%.

Table A.8: Validation of interstate firm identities

analytics provider, and pull all firms in SIC 16 (“Heavy Construction, Except Building Construction

Contractors”) and SIC 15 (“Building Construction—General Contractors and Operative Builders”).

I standardize names and first link exact cases. For non-exact cases, I search candidate Dun &

Bradstreet firms in the same state or in contiguous states and apply a constrained Jaro–Winkler

procedure: overall distance 0.06 after cleaning; require at least one shared meaningful token; require

the first meaningful token to share the same initial; if that first token has 4 characters, require an

exact match; if it has > 4 characters, allow a first-token Jaro–Winkler 0.07. Stronger restrictions on

the first token prevent false matches between companies that are technically similar in spelling but

clearly different firms, e.g. “PJ Construction Company" and “KM Construction Company". When

multiple candidates satisfy all rules, I retain the candidate with the smallest overall Jaro-Winkler

distance. Exact links cover 29% of auction firms in SIC 16 and 43% pooling SIC 15 and 16; the full

procedure yields a 48% match rate. A hand audit of 60 randomly sampled pairs finds 95% correct

(Table A.10).

B.3 Project Description Based Classification

I classify auctions based on brief project descriptions using OpenAI’s GPT-4o-mini language model

(March 2025 release) via the chat.completions.create API. The 9 categories given to OpenAI to

classify on in Table A.11 below.
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Firm State Self-description Listed sub-industries
SCS Engineers California SCS is an employee-owned

environmental consulting and
construction firm that designs
and implements sustainable en-
vironmental solutions.

Solid and hazardous waste
management; Renewable en-
ergy; Remediation; Carbon
capture.

Dan R. Dalton Inc. Colorado Dan R. Dalton Inc. is North
America’s heat straightening
specialists for repairing dam-
aged steel bridges and con-
tainer cranes.

Railroad bridge repair; High-
way bridge repair; Crane re-
pair; Ship repair.

Cutting Edge Group LLC New York We specialize in civil construc-
tion and design work. We also
perform mechanical and elec-
trical work to meet our client
needs.

Heavy civil; Building; Parks
& recreation; Horizontal direc-
tional drilling.

Rutledge Excavating Inc Pennsylvania Rutledge Excavating prides it-
self on delivering top-notch
full site development services
tailored to meet your needs.

Land clearing and demolition;
Concrete work; Erosion con-
trol; Stormwater management;
Drainage systems; Utility in-
stallations; Road construction.

Dome Corporation of Amer-
ica

Washington We do more than build spaces—
we create environments where
your team can grow, thrive and
innovate.

Capital project feasibility
study; Preconstruction; Gen-
eral construction; Commis-
sioning & turnover; Modern-
ization.

Note: Table reports names, state, self published business descriptions, and listed sub-industries for five randomly sample
firms in the data. Firms without public websites were excluded.

Table A.9: Firm Profiles

Validation

SIC group Share correct N

Building construction (SIC 15) 96.7% 30
Heavy construction (SIC 16) 93.3% 30

Note: Table reports share of correct firm matches for 60 randomly sampled firms, stratified by two-digit SIC code.

Table A.10: Validation accuracy of Firm Name Match

B.4 Measuring Project Size

An accurate measure of project size is important for comparing project prices. The data includes

the total tons for every project, which is a natural measure of size. However, this measure only

includes items that whose unit is tons – projects may differ in which units they use for similar inputs,
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Category Definition
Roadway Surfacing and
Repair

Projects involving milling, grinding, resurfacing, and overlaying
of roadways, including hot mix asphalt resurfacing, rubberized
asphalt overlays, and bituminous resurfacing.

Bridge Construction and
Repair

Bridge replacements and rehabilitations, high-rise bridge repairs,
painting, deck repairs, and waterproofing.

Culvert and Drainage Culvert repair and replacement, stormwater pond maintenance,
drainage improvements, and minor drainage structure work.

Safety and Traffic Improve-
ments

Traffic signal upgrades, installation of cable barriers, new or
replacement guardrails, traffic signs and devices, and traffic control
improvements.

Grading and Earthwork Clearing and grubbing, grading, slope protection, slide repairs,
and other work altering the contour of land.

Pedestrian, Sidewalk, and
Cycling Infrastructure

Construction or improvement of trails, bikeways, sidewalks, curb
ramps, curb and gutter, and safety features for non-motorized users.

Environmental and Land-
scaping

Environmental mitigation, tree trimming, landscaping, mowing,
and other activities to improve or protect the environment.

Facilities Construction, renovation, or maintenance of buildings, welcome
centers, rest areas, park-and-ride structures, weigh stations, or
other facilities.

Unknown Category not specified.

Table A.11: Project categories and definitions.

particularly across states.

I use the detailed data subsample from 2014 to 2023 to show that tons is a good proxy for size within

state, but less so between states. I then use this data to construct a nationally comparable measure of

size for projects between 2024 and 2019.

Table A.12 shows that within states, log tons of a project is highly correlated with other totals of

inputs by unit, with an 𝑅2 around .6. However, without state fixed effects, the 𝑅2 drops substantially,

in some cases close to 0. This suggests that within a state, the amount of inputs measured in tons

and the amount of other inputs are complements. Across states, however, they substitute each other,

suggesting states have different unit preferences for the same inputs.

I construct a cross-state measure of project size as total asphalt tons. Using the 2014–2023 item-level

subsample, I restrict to projects classified as asphalt. Within those projects, I then flag the items that

are truly asphalt—keywords such as asp, hma, hot mix, plant mix, bitum, superpave, or course layers

(wear, intermediate, surface, leveling, binder)—while excluding removal, milling, grinding, saw-cut,

and coating lines. Each flagged item is converted into short tons using standard engineering factors:
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Unit 𝛽 𝑝 Adjusted 𝑅2

Panel A: with state fixed effects
Log Square Yards 0.2428 0.000 0.623
Log Linear Feet 0.3161 0.000 0.625
Log Each 1.6802 0.000 0.629
Log Lump Sum 1.0968 0.000 0.597
Panel B: without state fixed effects
Log Square Yards 0.1259 0.000 0.018
Log Linear Feet 0.3848 0.000 0.103
Log Each 0.5115 0.000 0.008
Log Lump Sum 0.6586 0.000 0.012

Note: Table shows coefficients from regressions of the indicated size measure on log tons. Tons are measures as the sum
of amounts of all inputs in the project whose unit is tons.

Table A.12: Correlation between Log Tons and Other Measures of Project Size

one ton = 1.0, a metric ton = 1.1, a hundredweight = 0.056, a pound = 0.0005, a gallon of liquid

asphalt = 0.00425, a cubic yard of compacted hot-mix = 1.96, a square yard of a 1.5-inch overlay =

0.0825, and a square foot under the same assumption = 0.0092. Summing these conversions at the

project level yields total asphalt tons, along with the share of each project’s inputs and costs that

come from asphalt items. The resulting measure is more stable across states than the raw “tons”

field, which reflects only items originally recorded in tons and therefore misses variation in unit

conventions.

B.5 Measuring Distance to Firms

I construct a measure of the distance between project locations and bidding firms for the instrumental

variable regression with first stage in equation 3. I use the auction data and the procedure described

in Section B.2 to identify multi-state firms. I assign each firm’s home state ℎ as the first state in

which it appears. I define “state entrants” for state 𝑠 and year 𝑦 as firms active in a state other than

their home state that year: 𝑖 is an “entrant" if |bid𝑖𝑠𝑡 | > 0, ℎ𝑖 ≠ 𝑠. I obtain firms’ county locations

from the matched sample with Dun & Bradstreet data (see Section 2.2). I use only matched firms in

the Heavy Construction industry for this exercise, dropping Building Construction Firms, as the

latter is a much larger industry and therefore has a higher probability of duplicate firms names. This

match covers 60% of state entrants. I drop firms that “enter" in the first year of data for each state.

Finally, I clean the sample by restricting the sample to firms with locations in the identified home
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state and where said home state is a neighbor to the target state. Finally, I remove firms that ever

establish a location within the target state. The final match covers 13% of entrants.

Each project is assigned a location based on either the centroid of its county or, if multiple counties

are involved, the centroid of those counties. I exclude the 6% of projects referenced only by “District,”

“various,” or “statewide.” The distance between a firm and a project is defined as the distance from

the project location to the firm’s nearest establishment. Distance is calculated as the miles between

the county centroid of firm location and the county centroid of the auction locatio

C Model estimation and details

C.1 Robustness of homogenization regression specification

Model Median RMSE IQR RMSE Pooled RMSE

Baseline 0.250 0.092 0.271

+ unit covariates 0.223 0.065 0.220

+ item covariates 0.232 0.078 0.244

Table A.13: Cross-validated root mean squared error (RMSE) for three regression specifications. Median and
inter-quartile range (IQR) are calculated across states; the pooled RMSE weights observations equally. The
baseline specification includes fixed effects for engineering type and AI-derived project class, county-level
terrain ruggedness and rurality, and log total inputs measured in tons. The “+ unit covariates" specification
(preferred, corresponding to regression 8) adds log total material quantities aggregated by measurement
unit—tons, cubic yards, linear feet, square yards, and counts of “each”—and log the number of distinct
bid-schedule items; all physical quantities are converted to common units (e.g., pounds to tons). The “+
item covariates" specification further includes individual item quantities for every item used in at least 25%
of projects, along with log the number of distinct items and the count of “rare" items below this threshold.
Item effects are regularized with ridge penalties of 𝜆 = 0.5 on the item coefficients. All specifications ridge
penalities of 𝜆 = 1 on the auction-level intercept, and 0 on the baseline covariates.
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Figure A.13: Distribution of homogenized log bids by specification
Note: Figure plots violin densities of state-demeaned log bids for the three regression specifications defined in Table
A.13. Observations beyond the 0.5th and 99.5th percentiles of the residual distribution are dropped before plotting.
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C.2 Robustness of number of bidder prediction

Dependent variable:

N log bid log homogenized bid

(1) (2) (3) (4) (5) (6)

E[N], multinomial 1.639∗∗∗ −0.032∗∗∗

(0.015) (0.002)

E[N], xgboost 1.239∗∗∗ −0.020∗∗∗

(0.004) (0.001)

N −0.0005 −0.010∗∗∗

(0.003) (0.001)

state FE yes yes yes yes yes yes

Projected R-squared 0.201 0.719 0 0.009 0.004 0.01

Observations 47,431 47,431 46,952 46,952 44,793 44,793

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.14: Columns (1) and (2) show the correlation between the predicted number of bidders from two
models and the actual number of bidders. Columns (3) through (6) show the correlations between the number
of bidders—either actual or predicted—and both actual and homogenized bids. All models include the same
covariates: fixed effects for engineering type and AI-derived project class, county-level terrain ruggedness and
rurality, total input quantities measured in tons, individual quantities for all bid items present in at least 25%
of projects, the log number of distinct items, and the count of "rare" items below this frequency threshold.
The multinomial model is a multinomial logistic regression with a ridge penalty. The XGBoost model is a
gradient-boosted decision-tree model.
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Figure A.14: Number of bidder prediction by different models
Note: This figure compares actual and predicted bidder counts using the models shown in Table A.14. It also
includes predictions from a third model—identical to the multinomial logistic model but excluding bid schedule item
covariates—to illustrate that omitting these covariates has only a minor impact on predictions. In contrast, switching
from the penalized multinomial logistic model to the XGBoost model substantially alters predicted bidder counts.

Figure A.15: Auction clusters based on predicted number of bidders
Note: Figure shows the distribution of auctions across the actual number of bidders – “few-competitor" and “many-
competitor" – by the predicted bidder count clusters. Clusters are based on a median split of the predicted number of
bidders from the gradient tree boosting (XGBoost) algorithm. Details on the algorithm are given in Table A.14.
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Figure A.16: Most Rapidly Growing Input Items, Nebraska 2014–2023
Note: Figure shows trends in Nebraska pay items, 2014–2023. Each panel plots the yearly share of items for the items
with the highest share growth over the period. Shares are defined as the item’s count divided by the total items that year.
Mobilization is omitted as a category, as that represents a lump sum amount and is not an input used to control for
project characteristics. Over the full period, the average unique items per project rose rose by 19% from 54 to 64.
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Figure A.17: Median Markup Across States
Note: Figure shows the median winning-bid markup by state from 2019 to 2023. Each state’s color represents the
median markup among winning bids on all roadwork projects over the period. Projects with negative cost estimates are
dropped from the sample. Projects with a markup above .3 are grouped together in the highest-color category. The
highest median markup estimate is for Kentucky, with an estimate of .54.

D Technical Appendix

D.1 Optimal bidding equation

The first order equation for the bidding firm is 𝑖

𝜕EΠ
𝜕𝛽

= (𝛽 − 𝑐𝑖)
[∑︁

𝑛

Pr(𝑁 = 𝑛|𝑋) (𝑛 − 1)
(
1 − 𝐹 (𝛽−1)

)𝑛−2
(
− 𝑓 (𝛽−1) 1

𝛽′

) (
1 − 𝐻 (𝛽 |𝑋)

)
+
∑︁
𝑛

Pr(𝑁 = 𝑛|𝑋)
(
1 − 𝐹 (𝛽−1)

)𝑛−1 ( − ℎ(𝛽 |𝑋)) ]+
+
∑︁
𝑛

Pr(𝑁 = 𝑛)
(
1 − 𝐹 (𝛽−1)

)𝑛−1 (1 − 𝐻 (𝛽 |𝑋)
)
= 0.
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Solving for the bid strategy gives

𝛽(𝑐𝑖) = 𝑐𝑖+ ∑
𝑛 Pr(𝑁 = 𝑛|𝑋)

(
1 − 𝐹 (𝛽−1 |𝑋)

)𝑛−1 (1 − 𝐻 (𝛽 |𝑋))∑
𝑛 Pr(𝑁 = 𝑛|𝑋)

(
1 − 𝐹 (𝛽−1 |𝑋)

)𝑛−2
(
(𝑛 − 1) 𝑓 (𝛽−1 |𝑋)

𝛽′ (1 − 𝐻 (𝛽 |𝑋)) +
(
1 − 𝐹 (𝛽−1 |𝑋)

)
ℎ(𝛽 |𝑋)

)
D.2 Proof of equation 7

The proof closely follows the proof of Krasnokutskaya, 2011 Proposition 1. I show that the

proposed bidding function satisfies the conditions for equilibrium. Note that I have already assumed

equilibrium uniqueness.

Suppose 𝑧𝑖 = 𝑐𝑖 · 𝑦 where 𝑦 ∈ [𝑦, 𝑦̄] is a common multiplicative shock observed by all bidders in the

auction. Let 𝛼(𝑐𝑖) denote the symmetric equilibrium bidding strategy in the benchmark case 𝑦 = 1,

with distribution 𝐹 of 𝑐𝑖, density 𝑓 , entry probabilities 𝑝𝑁 (𝑛) and government reserve 𝑟 ∼ 𝐻 (𝑎).

The first order condition for the 𝑦 = 1 auction over is

𝑎𝑖 = 𝑐𝑖 +
∑
𝑛 𝑃(𝑛)

(
1 − 𝐹 (𝛼−1 (𝑎𝑖))

)𝑛−1 (1 − 𝐻 (𝑎𝑖)
)∑

𝑛 𝑃(𝑛)
[
(𝑛 − 1)

(
1 − 𝐹 (𝛼−1 (𝑎𝑖))

)𝑛−2
𝑓
(
𝛼−1 (𝑎𝑖)

) 1
𝛼′
(
𝛼−1 (𝑎𝑖 )

) (1 − 𝐻 (𝑎𝑖)
)
+
(
1 − 𝐹 (𝛼−1 (𝑎𝑖))

)𝑛−1
ℎ(𝑎𝑖)

]
Now consider a general auction with cost 𝑧𝑖 = 𝑐𝑖 · 𝑦. The first order condition is

𝑏𝑖 = 𝑐𝑖𝑦 +
∑
𝑛 𝑃(𝑛)

(
1 − 𝐺

(
𝛽−1 (𝑏𝑖

) )𝑛−1 (1 − 𝐾 (𝑏𝑖))∑
𝑛 𝑃(𝑛)

[
(𝑛 − 1)

(
1 − 𝐺

(
𝛽−1 (𝑏𝑖

) )𝑛−2 · 𝑔
(
𝛽−1 (𝑏𝑖

)
· 1
𝛽′ (𝛽−1 (𝑏𝑖 )) (1 − 𝐾 (𝑏𝑖)) + (1 − 𝐺

(
𝛽−1 (𝑏𝑖

)
)𝑛−1𝑘 (𝑏𝑖)

] .
I hypothesize that the bidder strategy is 𝛽(𝑧𝑖) = 𝑦 · 𝛼

(
𝑧𝑖
𝑦

)
. I now show that this satisfies the

differential equation. First note that 𝜕𝛽(𝑧𝑖)
𝜕𝑧𝑖

= 𝑦 · 𝛼′
(
𝑧𝑖
𝑦

)
· 1
𝑦
= 𝛼′

(
𝑧𝑖
𝑦

)
. Next, 𝛽−1(𝑏𝑖) = 𝑦 · 𝛼−1

(
𝑏𝑖
𝑦

)
.

Finally, the distributions can be written:
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𝐺

(
𝛽−1(𝑏𝑖)

)
= 𝐹

(
𝛼−1

(
𝑏𝑖

𝑦

))
,

𝑔

(
𝛽−1(𝑏𝑖)

)
=

1
𝑦
𝑓

(
𝛼−1

(
𝑏𝑖

𝑦

))
.

Plugging these definitions into the general auction FOC gives:

𝑏𝑖 = 𝑐𝑖 𝑦 +

𝑦 ·

∑
𝑛 𝑃 (𝑛)

(
1 − 𝐹

(
𝛼−1

(
𝑏𝑖
𝑦

)))𝑛−1 (
1 − 𝐾

(
𝑦 · 𝛼

(
𝑧𝑖
𝑦

)))
∑

𝑛 𝑃 (𝑛)
[
(𝑛 − 1)

(
1 − 𝐹

(
𝛼−1

(
𝑏𝑖
𝑦

)))𝑛−2
𝑓

(
𝛼−1

(
𝑏𝑖
𝑦

))
1

𝛼′
(
𝛼−1

(
𝑏𝑖
𝑦

)) (
1 − 𝐾

(
𝑦 · 𝛼

(
𝑧𝑖
𝑦

)))
+
(
1 − 𝐹

(
𝛼−1

(
𝑏𝑖
𝑦

)))𝑛−1
𝑘

(
𝑦 · 𝛼

(
𝑧𝑖
𝑦

)) ]

The final requirement for equality is on the secret reserve price, specifically that 𝐾 (𝑦 · 𝑎𝑖) = 𝐻 (𝑎𝑖)

(and consequently, 𝑘 (𝑏𝑖) = 1
𝑦
ℎ(𝑎𝑖)). In words, when the cost and bids are shifted by 𝑦, the reserve

must also shift by 𝑦, preserving scale invariance. One solution is to simply assume 𝑟 = 𝑦 · 𝜌 where

𝜌 corresponds to the 𝑦 = 1 auction. In practice, I make the stronger assumption that the reserve is

drawn from a distribution that is a fixed multiple of the bid distribution, so as bids scale with 𝑦 the

reserve distribution scales proportionally by the same constant factor.

D.3 Counterfactual estimation

Step 1: Rearrange first order equation Let 𝐴(𝑐) = ∑
𝑛 𝑃(𝑛) (1 − 𝐹 (𝑐))𝑛−1 and 𝐺 (𝑐) = ∑

𝑛 𝑃(𝑛 −

1) 𝑓 (𝑐) (1 − 𝐹 (𝑐))𝑛−2. Then equation 5 can be written

𝑏 − 𝑐 = 𝐴(𝑐) (1 − 𝐻 (𝑏)) 𝛽′
𝐺 (𝑐) (1 − 𝐻 (𝑏)) + 𝐴(𝑐) ℎ(𝑏) 𝛽′ ,

=⇒ 𝐴(𝑐)ℎ(𝑏) (𝑏 − 𝑐) 𝛽′ + (1 − 𝐻 (𝑏)) (𝑏 − 𝑐)𝐺 (𝑐) = 𝐴(𝑐) (1 − 𝐻 (𝑏)) 𝛽′,

=⇒ 𝛽′
[
𝐴(𝑐)ℎ(𝑏) (𝑏 − 𝑐) − 𝐴(𝑐) (1 + 𝐻 (𝑏))

]
= −(1 − 𝐻 (𝑏)) (𝑏 − 𝑐)𝐺 (𝑐),

=⇒ 𝛽′ =
(1 − 𝐻 (𝑏)) (𝑏 − 𝑐)𝐺 (𝑐)

𝐴(𝑐)
[
ℎ(𝑏) (𝑏 − 𝑐) + (1 − 𝐻 (𝑏))

] ,
= (𝑏 − 𝑐) 𝐺 (𝑐)

𝐴(𝑐)
1 − 𝐻 (𝑏)

1 + 𝐻 (𝑏) − ℎ(𝑏) (𝑏 − 𝑐) ,
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where 𝑏 = 𝛽(𝑐). This is an explicit first order ordinary differential equation.

Step 2: Write the initial condition I assume the secret reserve price has a mass point at the right

upper bound of the support 𝑐, rather than a right tail past this point. Empirically, this makes no

difference beyond the starting point of the ODE. At 𝑐, the bid is 𝑏̄ = 𝛽(𝑐) = 𝑐. I use this point as the

initial value and iterate left along the empirical support of 𝑐 to trace out the full bid function.

In a handful of (state, year, cluster) samples, the solver fails because the denominator in the ODE

approaches zero at the boundary. To address this, I shift the starting point to (𝑐 − 𝜖, 𝑏̄), where 𝜖 is

less than .5% of costs and 𝑏̄ is a first order Taylor approximation of 𝛽(𝑐 − 𝜖), as the derivative at the

boundary is zero.

Step 3: Numerically solve I estimate a separate solution curve for each (state, year, cluster) using

𝛽′ = (𝑏 − 𝑐) 𝐺 (𝑐)
𝐴(𝑐)

1−𝐻 (𝑏)
1+𝐻 (𝑏)−ℎ(𝑏) (𝑏−𝑐) and a Rosenbrock solution method for stiff differential equations,

provided by the Matlab function ‘ode23s’.
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